Suppr超能文献

r(0)在流行病概率系统中的预测能力。

The predictive power of r(0) in an epidemic probabilistic system.

作者信息

Alves D, Haas V J, Caliri A

机构信息

Laboratório Interdisciplinar de Computação Científica, Faculdades COC, Rua Abrahão Issa Hallack, 980 -, 14096-160 Ribeirão Preto, SP -, Brazil ; Departamento de Física e Química, FCFRP -, Universidade de São Paulo, Av. do Café S/N -, 14040-903 Ribeirão Preto, SP -, Brazil.

出版信息

J Biol Phys. 2003 Mar;29(1):63-75. doi: 10.1023/A:1022567418081.

Abstract

An important issue in theoretical epidemiology is the epidemic thresholdphenomenon, which specify the conditions for an epidemic to grow or die out.In standard (mean-field-like) compartmental models the concept of the basic reproductive number, R(0), has been systematically employed as apredictor for epidemic spread and as an analytical tool to study thethreshold conditions. Despite the importance of this quantity, there are nogeneral formulation of R(0) when one considers the spread of a disease ina generic finite population, involving, for instance, arbitrary topology ofinter-individual interactions and heterogeneous mixing of susceptible andimmune individuals. The goal of this work is to study this concept in ageneralized stochastic system described in terms of global and localvariables. In particular, the dependence of R(0) on the space ofparameters that define the model is investigated; it is found that near ofthe `classical' epidemic threshold transition the uncertainty about thestrength of the epidemic process still is significantly large. Theforecasting attributes of R(0) for a discrete finite system is discussedand generalized; in particular, it is shown that, for a discrete finitesystem, the pretentious predictive power of R(0) is significantlyreduced.

摘要

理论流行病学中的一个重要问题是流行阈值现象,它规定了流行病增长或消亡的条件。在标准(类平均场) compartmental 模型中,基本再生数(R(0))的概念已被系统地用作流行病传播的预测指标和研究阈值条件的分析工具。尽管这个量很重要,但当考虑疾病在一般有限人群中的传播时,例如涉及个体间相互作用的任意拓扑结构以及易感个体和免疫个体的异质混合时,(R(0))并没有通用的公式。这项工作的目标是在一个用全局和局部变量描述的广义随机系统中研究这个概念。特别地,研究了(R(0))对定义模型的参数空间的依赖性;发现在“经典”流行阈值转变附近,流行病过程强度的不确定性仍然很大。讨论并推广了离散有限系统中(R(0))的预测属性;特别地,表明对于离散有限系统,(R(0))的虚假预测能力显著降低。

相似文献

2
Network epidemic models with two levels of mixing.具有两级混合的网络流行病模型。
Math Biosci. 2008 Mar;212(1):69-87. doi: 10.1016/j.mbs.2008.01.001. Epub 2008 Jan 11.
3
Nonperturbative heterogeneous mean-field approach to epidemic spreading in complex networks.复杂网络中传染病传播的非微扰异质平均场方法
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 2):036105. doi: 10.1103/PhysRevE.84.036105. Epub 2011 Sep 9.
6
An individual-based approach to SIR epidemics in contact networks.基于个体的接触网络中 SIR 传染病模型
J Theor Biol. 2011 Aug 21;283(1):136-44. doi: 10.1016/j.jtbi.2011.05.029. Epub 2011 Jun 6.
10
Estimating finite-population reproductive numbers in heterogeneous populations.估计异质人群中的有限总体繁殖数。
J Theor Biol. 2016 May 21;397:1-12. doi: 10.1016/j.jtbi.2016.01.022. Epub 2016 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验