Globus T R, Woolard D L, Khromova T, Crowe T W, Bykhovskaia M, Gelmont B L, Hesler J, Samuels A C
University of Virginia, Charlottesville, VA.
J Biol Phys. 2003 Jun;29(2-3):89-100. doi: 10.1023/A:1024420104400.
The terahertz frequency absorption spectraof DNA molecules reflect low-frequencyinternal helical vibrations involvingrigidly bound subgroups that are connectedby the weakest bonds, including thehydrogen bonds of the DNA base pairs,and/or non-bonded interactions. Althoughnumerous difficulties make the directidentification of terahertz phonon modes inbiological materials very challenging, ourresearch has shown that such measurementsare both possible and fruitful. Spectra ofdifferent DNA samples reveal a large numberof modes and a reasonable level ofsequence-specific uniqueness. In an attemptto show that the long wavelength absorptionfeatures are intrinsic properties ofbiological materials determined by phononmodes, a normal mode analysis has been usedto predict the absorption spectra ofpolynucleotide RNA Poly[G]-Poly[C]. Directcomparison demonstrated a correlationbetween calculated and experimentallyobserved spectra of the RNA polymers, thusconfirming that the fundamental physicalnature of the observed resonance structureis caused by the internal vibration modesin the macromolecules.In this work we demonstrate results fromFourier-Transform Infrared (FTIR)spectroscopy of DNA macromolecules andrelated biological materials in theterahertz frequency range. Carefulattention was paid to the possibility ofinterference or etalon effects in thesamples, and phenomena were clearlydifferentiated from the actual phononmodes. In addition, we studied thedependence of transmission spectra ofaligned DNA and polynucleotide film sampleson molecule orientation relative to theelectromagnetic field, showing the expectedchange in mode strength as a function ofsample orientation. Further, the absorptioncharacteristics were extracted from thetransmission data using the interferencespectroscopy technique, and a stronganisotropy of terahertz characteristics wasdemonstrated.
DNA分子的太赫兹频率吸收光谱反映了涉及通过最弱键连接的刚性结合亚基的低频内部螺旋振动,这些最弱键包括DNA碱基对的氢键和/或非键相互作用。尽管众多困难使得在生物材料中直接识别太赫兹声子模式极具挑战性,但我们的研究表明这种测量是可行且富有成果的。不同DNA样品的光谱揭示了大量模式以及合理水平的序列特异性独特性。为了表明长波长吸收特征是由声子模式决定的生物材料的固有特性,已使用正则模式分析来预测多核苷酸RNA聚[G]-聚[C]的吸收光谱。直接比较证明了RNA聚合物的计算光谱与实验观察光谱之间的相关性,从而证实了观察到的共振结构的基本物理性质是由大分子中的内部振动模式引起的。
在这项工作中,我们展示了在太赫兹频率范围内对DNA大分子及相关生物材料进行傅里叶变换红外(FTIR)光谱分析的结果。我们仔细关注了样品中干扰或标准具效应的可能性,并将这些现象与实际的声子模式清楚地区分开来。此外,我们研究了排列的DNA和多核苷酸薄膜样品的透射光谱对分子相对于电磁场取向的依赖性,显示了模式强度随样品取向的预期变化。此外,使用干涉光谱技术从透射数据中提取吸收特性,并证明了太赫兹特性的强各向异性。