The Nanometer Structure Consortium (nmC@LU) and Division of Solid State Physics, Lund University, Lund, Sweden.
Sci Rep. 2013;3:1092. doi: 10.1038/srep01092. Epub 2013 Jan 21.
Emerging concepts for on-chip biotechnologies aim to replace microfluidic flow by active, molecular-motor driven transport of cytoskeletal filaments, including applications in bio-simulation, biocomputation, diagnostics, and drug screening. Many of these applications require reliable detection, with minimal data acquisition, of filaments at many, local checkpoints in a device consisting of a potentially complex network of channels that guide filament motion. Here we develop such a detection system using actomyosin motility. Detection points consist of pairs of gold lines running perpendicular to nanochannels that guide motion of fluorescent actin filaments. Fluorescence interference contrast (FLIC) is used to locally enhance the signal at the gold lines. A cross-correlation method is used to suppress errors, allowing reliable detection of single or multiple filaments. Optimal device design parameters are discussed. The results open for automatic read-out of filament count and velocity in high-throughput motility assays, helping establish the viability of active, motor-driven on-chip applications.
新兴的片上生物技术概念旨在通过主动的、分子马达驱动的细胞骨架丝运输来替代微流控流动,包括在生物模拟、生物计算、诊断和药物筛选中的应用。这些应用中的许多都需要可靠的检测,即在一个由可能复杂的通道网络组成的设备中,在许多局部检查点上对细丝进行最小的数据采集,该设备可以引导细丝运动。在这里,我们使用肌动球蛋白运动来开发这样的检测系统。检测点由垂直于引导荧光肌动蛋白丝运动的纳米通道的金线对组成。荧光干涉对比(FLIC)用于局部增强金线处的信号。使用互相关方法来抑制误差,从而能够可靠地检测单个或多个细丝。讨论了最优的器件设计参数。这些结果为高通量运动分析中的细丝计数和速度的自动读出开辟了道路,有助于建立主动的、基于马达的片上应用的可行性。