Suppr超能文献

肿瘤相关巨噬细胞作为乳腺癌潜在的诊断和预后生物标志物。

Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer.

机构信息

National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, 5# Dong Dan San Tiao, Beijing 100005, China.

出版信息

Cancer Lett. 2013 May 10;332(1):3-10. doi: 10.1016/j.canlet.2013.01.024. Epub 2013 Jan 21.

Abstract

Breast cancer development largely depends upon the essential contributions from the tumor microenvironment, where several inflammatory cell populations (e.g. macrophages) orchestrate breast cancer development. The majority of tumor-associated macrophages (TAMs) exhibit alternatively activated M2 properties, produce abundant anti-inflammatory factors and facilitate tumor development. Clinical evidences compellingly indicate the association between high TAMs influx and poor prognosis in patients with breast cancers. The pan-macrophage marker CD68 is now generally utilized to identify TAMs in diagnostic biopsy samples, and some other TAM-related biomarkers are also utilized in prognosis prediction, including CD163, vascular endothelial growth factor (VEGF), hypoxia-inducible factors (HIFs), proliferating cellular nuclear antigen (PCNA), ferritin light chain (FTL) and C-C motif chemokine ligand 18 (CCL18). In this review, we highlight the recent progress made in understanding the relationship between TAMs and clinicopathological parameters in human breast cancer and address the potential value of TAMs as diagnostic and prognostic biomarkers.

摘要

乳腺癌的发展在很大程度上取决于肿瘤微环境的重要贡献,其中几种炎症细胞群体(如巨噬细胞)协调乳腺癌的发展。大多数肿瘤相关巨噬细胞(TAMs)表现出替代性激活的 M2 特性,产生丰富的抗炎因子,并促进肿瘤的发展。临床证据有力地表明,在乳腺癌患者中,TAMs 大量浸润与预后不良之间存在关联。泛巨噬细胞标志物 CD68 现在通常用于在诊断性活检样本中识别 TAMs,其他一些与 TAM 相关的生物标志物也用于预后预测,包括 CD163、血管内皮生长因子(VEGF)、缺氧诱导因子(HIFs)、增殖细胞核抗原(PCNA)、铁蛋白轻链(FTL)和 C-C 基序趋化因子配体 18(CCL18)。在这篇综述中,我们强调了在理解人类乳腺癌中 TAMs 与临床病理参数之间关系方面的最新进展,并探讨了 TAMs 作为诊断和预后生物标志物的潜在价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验