Suppr超能文献

同时预测蛋白质二级结构和跨膜跨度。

Simultaneous prediction of protein secondary structure and transmembrane spans.

机构信息

Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.

出版信息

Proteins. 2013 Jul;81(7):1127-40. doi: 10.1002/prot.24258. Epub 2013 Apr 10.

Abstract

Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an α-helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three-state secondary structure prediction, and 94.8% for three-state transmembrane span prediction. These accuracies are comparable to state-of-the-art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org.

摘要

从蛋白质序列预测跨膜跨度和二级结构通常是(膜)蛋白质结构特征描述的第一步。氨基酸在蛋白质中形成二级结构和位于膜中的倾向是相关的。然而,目前的方法要么预测二级结构,要么预测单个跨膜状态。我们引入了一种从蛋白质序列同时预测二级结构和跨膜跨度的方法。这种方法不仅消除了从几个预测器可能相互矛盾的输出中创建共识预测的必要性,而且还有可能预测构象开关,即序列区域具有很高的可能性从溶液中的线圈构象转变为例如α-螺旋跨膜状态。人工神经网络在 177 个膜蛋白和 6048 个可溶性蛋白的数据库上进行了训练。输出是序列中每个残基的 3×3 维概率矩阵,该矩阵结合了三种二级结构类型(螺旋、链、线圈)和三种环境类型(膜核心、界面、溶液)。对于九个可能的状态,预测准确率为 70.3%,对于三状态二级结构预测,准确率为 73.2%,对于三状态跨膜跨度预测,准确率为 94.8%。这些准确性可与二级结构的最新预测器(例如 Psipred)或跨膜位置预测器(例如 OCTOPUS)相媲美。该方法可作为网络服务器使用,也可在 www.meilerlab.org 上下载。

相似文献

1
Simultaneous prediction of protein secondary structure and transmembrane spans.
Proteins. 2013 Jul;81(7):1127-40. doi: 10.1002/prot.24258. Epub 2013 Apr 10.
2
A neural network method for prediction of beta-turn types in proteins using evolutionary information.
Bioinformatics. 2004 Nov 1;20(16):2751-8. doi: 10.1093/bioinformatics/bth322. Epub 2004 May 14.
3
Enhanced recognition of protein transmembrane domains with prediction-based structural profiles.
Bioinformatics. 2006 Feb 1;22(3):303-9. doi: 10.1093/bioinformatics/bti784. Epub 2005 Nov 17.
4
Computational differentiation of N-terminal signal peptides and transmembrane helices.
Biochem Biophys Res Commun. 2003 Dec 26;312(4):1278-83. doi: 10.1016/j.bbrc.2003.11.069.
8
DNSS2: Improved ab initio protein secondary structure prediction using advanced deep learning architectures.
Proteins. 2021 Feb;89(2):207-217. doi: 10.1002/prot.26007. Epub 2020 Sep 16.
9
Protein secondary structure prediction with SPARROW.
J Chem Inf Model. 2012 Feb 27;52(2):545-56. doi: 10.1021/ci200321u. Epub 2012 Jan 23.

引用本文的文献

1
PtdIns4P is required for the autophagosomal recruitment of STX17 (syntaxin 17) to promote lysosomal fusion.
Autophagy. 2024 Jul;20(7):1639-1650. doi: 10.1080/15548627.2024.2322493. Epub 2024 Mar 8.
2
Computational modeling and prediction of deletion mutants.
Structure. 2023 Jun 1;31(6):713-723.e3. doi: 10.1016/j.str.2023.04.005. Epub 2023 Apr 28.
4
State of the art in epitope mapping and opportunities in COVID-19.
Future Sci OA. 2023 Feb;16(3-06):FSO832. doi: 10.2144/fsoa-2022-0048. Epub 2023 Mar 6.
5
Membrane contact probability: An essential and predictive character for the structural and functional studies of membrane proteins.
PLoS Comput Biol. 2022 Mar 30;18(3):e1009972. doi: 10.1371/journal.pcbi.1009972. eCollection 2022 Mar.
6
A Multitask Deep-Learning Method for Predicting Membrane Associations and Secondary Structures of Proteins.
J Proteome Res. 2021 Aug 6;20(8):4089-4100. doi: 10.1021/acs.jproteome.1c00410. Epub 2021 Jul 8.
7
Evolution and Diversity of Semaphorins and Plexins in Choanoflagellates.
Genome Biol Evol. 2021 Mar 1;13(3). doi: 10.1093/gbe/evab035.
9
Protein structure prediction using sparse NOE and RDC restraints with Rosetta in CASP13.
Proteins. 2019 Dec;87(12):1341-1350. doi: 10.1002/prot.25769. Epub 2019 Jul 18.
10
Structure and Function of the Transmembrane Domain of NsaS, an Antibiotic Sensing Histidine Kinase in Staphylococcus aureus.
J Am Chem Soc. 2018 Jun 20;140(24):7471-7485. doi: 10.1021/jacs.7b09670. Epub 2018 Jun 9.

本文引用的文献

1
Crystal structure of the β2 adrenergic receptor-Gs protein complex.
Nature. 2011 Jul 19;477(7366):549-55. doi: 10.1038/nature10361.
2
Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10174-7. doi: 10.1073/pnas.1103979108. Epub 2011 May 23.
3
Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9420-4. doi: 10.1073/pnas.1105810108. Epub 2011 May 23.
4
Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins.
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7385-90. doi: 10.1073/pnas.1017442108. Epub 2011 Apr 18.
6
Algorithm for selection of optimized EPR distance restraints for de novo protein structure determination.
J Struct Biol. 2011 Mar;173(3):549-57. doi: 10.1016/j.jsb.2010.11.003. Epub 2010 Nov 11.
7
Transmembrane protein topology prediction using support vector machines.
BMC Bioinformatics. 2009 May 26;10:159. doi: 10.1186/1471-2105-10-159.
8
A unified hydrophobicity scale for multispan membrane proteins.
Proteins. 2009 Jul;76(1):13-29. doi: 10.1002/prot.22315.
9
OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar.
Bioinformatics. 2008 Aug 1;24(15):1662-8. doi: 10.1093/bioinformatics/btn221. Epub 2008 May 12.
10
Molecular code for transmembrane-helix recognition by the Sec61 translocon.
Nature. 2007 Dec 13;450(7172):1026-30. doi: 10.1038/nature06387.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验