Chemical and Physical Biology Program, 340 Light Hall, Vanderbilt University, Nashville, TN 37232, USA.
J Struct Biol. 2011 Mar;173(3):549-57. doi: 10.1016/j.jsb.2010.11.003. Epub 2010 Nov 11.
A hybrid protein structure determination approach combining sparse Electron Paramagnetic Resonance (EPR) distance restraints and Rosetta de novo protein folding has been previously demonstrated to yield high quality models (Alexander et al. (2008)). However, widespread application of this methodology to proteins of unknown structures is hindered by the lack of a general strategy to place spin label pairs in the primary sequence. In this work, we report the development of an algorithm that optimally selects spin labeling positions for the purpose of distance measurements by EPR. For the α-helical subdomain of T4 lysozyme (T4L), simulated restraints that maximize sequence separation between the two spin labels while simultaneously ensuring pairwise connectivity of secondary structure elements yielded vastly improved models by Rosetta folding. 54% of all these models have the correct fold compared to only 21% and 8% correctly folded models when randomly placed restraints or no restraints are used, respectively. Moreover, the improvements in model quality require a limited number of optimized restraints, which is determined by the pairwise connectivities of T4L α-helices. The predicted improvement in Rosetta model quality was verified by experimental determination of distances between spin labels pairs selected by the algorithm. Overall, our results reinforce the rationale for the combined use of sparse EPR distance restraints and de novo folding. By alleviating the experimental bottleneck associated with restraint selection, this algorithm sets the stage for extending computational structure determination to larger, traditionally elusive protein topologies of critical structural and biochemical importance.
先前已经证明,结合稀疏电子顺磁共振(EPR)距离约束和 Rosetta 从头蛋白质折叠的混合蛋白结构测定方法可产生高质量的模型(Alexander 等人,2008 年)。然而,由于缺乏在蛋白质的一级序列中放置自旋标记对的通用策略,该方法广泛应用于未知结构的蛋白质受到了阻碍。在这项工作中,我们报告了一种算法的开发,该算法可通过 EPR 优化选择用于距离测量的自旋标记位置。对于 T4 溶菌酶(T4L)的α-螺旋亚结构域,通过模拟最大化两个自旋标记之间序列分离的约束条件,同时确保二级结构元素的成对连接性,这使得 Rosetta 折叠产生的模型大大改善。与随机放置约束条件或不使用约束条件时相比,所有这些模型中有 54%的模型具有正确的折叠,而正确折叠的模型分别只有 21%和 8%。此外,模型质量的提高需要数量有限的优化约束条件,这由 T4Lα-螺旋的成对连接性决定。通过实验确定通过算法选择的自旋标记对之间的距离来验证 Rosetta 模型质量提高的预测。总体而言,我们的结果加强了稀疏 EPR 距离约束和从头折叠相结合使用的原理。通过缓解与约束条件选择相关的实验瓶颈,该算法为将计算结构测定扩展到更大,传统上难以捉摸的具有关键结构和生化重要性的蛋白质拓扑结构奠定了基础。