Suppr超能文献

应用磁共振弹性成像技术在体测量雪貂脑的黏弹性性质。

Viscoelastic properties of the ferret brain measured in vivo at multiple frequencies by magnetic resonance elastography.

机构信息

Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.

出版信息

J Biomech. 2013 Mar 15;46(5):863-70. doi: 10.1016/j.jbiomech.2012.12.024. Epub 2013 Jan 24.

Abstract

Characterization of the dynamic mechanical behavior of brain tissue is essential for understanding and simulating the mechanisms of traumatic brain injury (TBI). Changes in mechanical properties may also reflect changes in the brain due to aging or disease. In this study, we used magnetic resonance elastography (MRE) to measure the viscoelastic properties of ferret brain tissue in vivo. Three-dimensional (3D) displacement fields were acquired during wave propagation in the brain induced by harmonic excitation of the skull at 400 Hz, 600 Hz and 800 Hz. Shear waves with wavelengths in the order of millimeters were clearly visible in the displacement field, in strain fields, and in the curl of displacement field (which contains no contributions from longitudinal waves). Viscoelastic parameters (storage and loss moduli) governing dynamic shear deformation were estimated in gray and white matter for these excitation frequencies. To characterize the reproducibility of measurements, two ferrets were studied on three different dates each. Estimated viscoelastic properties of white matter in the ferret brain were generally similar to those of gray matter and consistent between animals and scan dates. In both tissue types G' increased from approximately 3 kPa at 400 Hz to 7 kPa at 800 Hz and G″ increased from approximately 1 kPa at 400 Hz to 2 kPa at 800 Hz. These measurements of shear wave propagation in the ferret brain can be used to both parameterize and validate finite element models of brain biomechanics.

摘要

研究脑组织的动态力学特性对于理解和模拟创伤性脑损伤(TBI)的机制至关重要。力学性能的变化也可能反映出由于衰老或疾病导致的大脑变化。在这项研究中,我们使用磁共振弹性成像(MRE)来测量活体雪貂脑组织的粘弹性特性。在颅骨以 400Hz、600Hz 和 800Hz 的谐波激励下,大脑中产生波传播时,我们获得了三维(3D)位移场。在位移场、应变场和位移场的扭曲(其中不包含纵波的贡献)中,可以清楚地看到毫米级波长的剪切波。对于这些激励频率,我们在灰质和白质中估计了控制动态剪切变形的粘弹性参数(储能和损耗模量)。为了表征测量的可重复性,两只雪貂在三个不同的日期进行了研究。雪貂大脑白质的估计粘弹性特性通常与灰质相似,并且在动物和扫描日期之间是一致的。在两种组织类型中,G'从大约 400Hz 的 3kPa 增加到 800Hz 的 7kPa,G"从大约 400Hz 的 1kPa 增加到 800Hz 的 2kPa。这些在雪貂大脑中传播的剪切波的测量结果可用于对大脑生物力学的有限元模型进行参数化和验证。

相似文献

1
Viscoelastic properties of the ferret brain measured in vivo at multiple frequencies by magnetic resonance elastography.
J Biomech. 2013 Mar 15;46(5):863-70. doi: 10.1016/j.jbiomech.2012.12.024. Epub 2013 Jan 24.
2
Viscoelastic properties of human cerebellum using magnetic resonance elastography.
J Biomech. 2011 Jul 7;44(10):1909-13. doi: 10.1016/j.jbiomech.2011.04.034. Epub 2011 May 11.
3
Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography.
Phys Med Biol. 2011 Apr 21;56(8):2391-406. doi: 10.1088/0031-9155/56/8/005. Epub 2011 Mar 22.
4
Simulation of harmonic shear waves in the human brain and comparison with measurements from magnetic resonance elastography.
J Mech Behav Biomed Mater. 2021 Jun;118:104449. doi: 10.1016/j.jmbbm.2021.104449. Epub 2021 Mar 17.
5
Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime.
Phys Med Biol. 2011 Oct 7;56(19):6379-400. doi: 10.1088/0031-9155/56/19/014. Epub 2011 Sep 9.
6
Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography.
J Mech Behav Biomed Mater. 2018 Mar;79:30-37. doi: 10.1016/j.jmbbm.2017.11.045. Epub 2017 Dec 9.
8
MR elastography frequency-dependent and independent parameters demonstrate accelerated decrease of brain stiffness in elder subjects.
Eur Radiol. 2020 Dec;30(12):6614-6623. doi: 10.1007/s00330-020-07054-7. Epub 2020 Jul 18.
9
In vivo brain viscoelastic properties measured by magnetic resonance elastography.
NMR Biomed. 2008 Aug;21(7):755-64. doi: 10.1002/nbm.1254.

引用本文的文献

3
Multi-scale measurement of stiffness in the developing ferret brain.
Sci Rep. 2023 Nov 23;13(1):20583. doi: 10.1038/s41598-023-47900-4.
5
The emerging roles of piezo1 channels in animal models of multiple sclerosis.
Front Immunol. 2022 Sep 13;13:976522. doi: 10.3389/fimmu.2022.976522. eCollection 2022.
7
Orientation of neurites influences severity of mechanically induced tau pathology.
Biophys J. 2021 Aug 17;120(16):3272-3282. doi: 10.1016/j.bpj.2021.07.011. Epub 2021 Jul 20.
8
Mechanical injuries of neurons induce tau mislocalization to dendritic spines and tau-dependent synaptic dysfunction.
Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):29069-29079. doi: 10.1073/pnas.2008306117. Epub 2020 Nov 2.
9
Structural Anisotropy vs. Mechanical Anisotropy: The Contribution of Axonal Fibers to the Material Properties of Brain White Matter.
Ann Biomed Eng. 2021 Mar;49(3):991-999. doi: 10.1007/s10439-020-02643-5. Epub 2020 Oct 6.
10
Ultrahigh-sensitive optical coherence elastography.
Light Sci Appl. 2020 Apr 13;9:58. doi: 10.1038/s41377-020-0297-9. eCollection 2020.

本文引用的文献

1
Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: a phantom study.
J Magn Reson Imaging. 2013 Jan;37(1):217-26. doi: 10.1002/jmri.23797. Epub 2012 Sep 17.
2
Transmission, attenuation and reflection of shear waves in the human brain.
J R Soc Interface. 2012 Nov 7;9(76):2899-910. doi: 10.1098/rsif.2012.0325. Epub 2012 Jun 6.
3
Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography.
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6650-5. doi: 10.1073/pnas.1200151109. Epub 2012 Apr 5.
4
Magnetic resonance elastography of the brain in a mouse model of Alzheimer's disease: initial results.
Magn Reson Imaging. 2012 May;30(4):535-9. doi: 10.1016/j.mri.2011.12.019. Epub 2012 Feb 10.
5
In vivo waveguide elastography of white matter tracts in the human brain.
Magn Reson Med. 2012 Nov;68(5):1410-22. doi: 10.1002/mrm.24141. Epub 2012 Jan 17.
6
Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime.
Phys Med Biol. 2011 Oct 7;56(19):6379-400. doi: 10.1088/0031-9155/56/19/014. Epub 2011 Sep 9.
7
Microscopic magnetic resonance elastography of traumatic brain injury model.
J Neurosci Methods. 2011 Oct 15;201(2):296-306. doi: 10.1016/j.jneumeth.2011.08.019. Epub 2011 Aug 17.
8
An octahedral shear strain-based measure of SNR for 3D MR elastography.
Phys Med Biol. 2011 Jul 7;56(13):N153-64. doi: 10.1088/0031-9155/56/13/N02. Epub 2011 Jun 8.
9
Viscoelastic properties of human cerebellum using magnetic resonance elastography.
J Biomech. 2011 Jul 7;44(10):1909-13. doi: 10.1016/j.jbiomech.2011.04.034. Epub 2011 May 11.
10
Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography.
Phys Med Biol. 2011 Apr 21;56(8):2391-406. doi: 10.1088/0031-9155/56/8/005. Epub 2011 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验