Suppr超能文献

相似文献

1
CrcZ and CrcX regulate carbon source utilization in Pseudomonas syringae pathovar tomato strain DC3000.
RNA Biol. 2013 Feb;10(2):245-55. doi: 10.4161/rna.23019. Epub 2013 Jan 25.
2
3
Transcriptional activation of the CrcZ and CrcY regulatory RNAs by the CbrB response regulator in Pseudomonas putida.
Mol Microbiol. 2013 Jul;89(1):189-205. doi: 10.1111/mmi.12270. Epub 2013 Jun 11.
4
The CbrB Regulon: Promoter dissection reveals novel insights into the CbrAB expression network in Pseudomonas putida.
PLoS One. 2018 Dec 17;13(12):e0209191. doi: 10.1371/journal.pone.0209191. eCollection 2018.
7
Effect of Crc and Hfq proteins on the transcription, processing, and stability of the Pseudomonas putida CrcZ sRNA.
RNA. 2016 Dec;22(12):1902-1917. doi: 10.1261/rna.058313.116. Epub 2016 Oct 24.
8
The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism in Pseudomonas putida.
Environ Microbiol. 2015 Sep;17(9):3362-78. doi: 10.1111/1462-2920.12812. Epub 2015 Mar 27.
9
Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21866-71. doi: 10.1073/pnas.0910308106.
10
Hierarchical management of carbon sources is regulated similarly by the CbrA/B systems in Pseudomonas aeruginosa and Pseudomonas putida.
Microbiology (Reading). 2014 Oct;160(Pt 10):2243-2252. doi: 10.1099/mic.0.078873-0. Epub 2014 Jul 16.

引用本文的文献

2
All-at-once RNA folding with 3D motif prediction framed by evolutionary information.
Res Sq. 2025 Mar 26:rs.3.rs-5664139. doi: 10.21203/rs.3.rs-5664139/v1.
3
All-at-once RNA folding with 3D motif prediction framed by evolutionary information.
bioRxiv. 2024 Dec 20:2024.12.17.628809. doi: 10.1101/2024.12.17.628809.
4
Aminoglycoside uptake, stress, and potentiation in Gram-negative bacteria: new therapies with old molecules.
Microbiol Mol Biol Rev. 2023 Dec 20;87(4):e0003622. doi: 10.1128/mmbr.00036-22. Epub 2023 Dec 4.
5
Regulation of hierarchical carbon substrate utilization, nitrogen fixation, and root colonization by the Hfq/Crc/CrcZY genes in .
iScience. 2022 Nov 23;25(12):105663. doi: 10.1016/j.isci.2022.105663. eCollection 2022 Dec 22.
6
Implications of carbon catabolite repression for plant-microbe interactions.
Plant Commun. 2021 Dec 28;3(2):100272. doi: 10.1016/j.xplc.2021.100272. eCollection 2022 Mar 14.
8
The Regulatory Functions of σ Factor in Phytopathogenic Bacteria.
Int J Mol Sci. 2021 Nov 24;22(23):12692. doi: 10.3390/ijms222312692.
9
Identification of Indole-3-Acetic Acid-Regulated Genes in pv. tomato Strain DC3000.
J Bacteriol. 2022 Jan 18;204(1):e0038021. doi: 10.1128/JB.00380-21. Epub 2021 Oct 18.
10
Specific and Global RNA Regulators in .
Int J Mol Sci. 2021 Aug 11;22(16):8632. doi: 10.3390/ijms22168632.

本文引用的文献

1
Catabolite repression control of pyocyanin biosynthesis at an intersection of primary and secondary metabolism in Pseudomonas aeruginosa.
Appl Environ Microbiol. 2012 Jul;78(14):5016-20. doi: 10.1128/AEM.00026-12. Epub 2012 May 4.
3
4
Defining the Pseudomonas genus: where do we draw the line with Azotobacter?
Microb Ecol. 2012 Feb;63(2):239-48. doi: 10.1007/s00248-011-9914-8. Epub 2011 Aug 3.
5
Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa.
J Bacteriol. 2011 Jun;193(11):2784-92. doi: 10.1128/JB.00164-11. Epub 2011 Apr 8.
9
The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa.
Environ Microbiol. 2010 Dec;12(12):3196-212. doi: 10.1111/j.1462-2920.2010.02292.x.
10
The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell.
Bioinformatics. 2010 Jul 1;26(13):1669-70. doi: 10.1093/bioinformatics/btq243. Epub 2010 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验