Suppr超能文献

小 RNA 作为铜绿假单胞菌碳分解代谢物阻遏作用的全局调控因子。

Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa.

机构信息

Département de Microbiologie Fondamentale, Université de Lausanne, CH-1015 Lausanne, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21866-71. doi: 10.1073/pnas.0910308106.

Abstract

In the metabolically versatile bacterium Pseudomonas aeruginosa, the RNA-binding protein Crc is involved in catabolite repression of a range of degradative genes, such as amiE (encoding aliphatic amidase). We found that a CA-rich sequence (termed CA motif) in the amiE translation initiation region was important for Crc binding. The small RNA CrcZ (407 nt) containing 5 CA motifs was able to bind the Crc protein with high affinity and to remove it from amiE mRNA in vitro. Overexpression of crcZ relieved catabolite repression in vivo, whereas a crcZ mutation pleiotropically prevented the utilization of several carbon sources. The sigma factor RpoN and the CbrA/CbrB two-component system, which is known to maintain a healthy carbon-nitrogen balance, were necessary for crcZ expression. During growth on succinate, a preferred carbon source, CrcZ expression was low, resulting in catabolite repression of amiE and other genes under Crc control. By contrast, during growth on mannitol, a poor carbon source, elevated CrcZ levels correlated with relief of catabolite repression. During growth on glucose, an intermediate carbon source, CrcZ levels and amiE expression were intermediate between those observed in succinate and mannitol media. Thus, the CbrA-CbrB-CrcZ-Crc system allows the bacterium to adapt differentially to various carbon sources. This cascade also regulated the expression of the xylS (benR) gene, which encodes a transcriptional regulator involved in benzoate degradation, in an analogous way, confirming this cascade's global role.

摘要

在代谢灵活的铜绿假单胞菌中,RNA 结合蛋白 Crc 参与一系列降解基因(如 amiE,编码脂肪酶酰胺酶)的分解代谢物抑制。我们发现 amiE 翻译起始区富含 CA 的序列(称为 CA 基序)对于 Crc 结合很重要。含有 5 个 CA 基序的小 RNA CrcZ(407nt)能够与 Crc 蛋白高亲和力结合,并在体外从 amiE mRNA 上移除它。CrcZ 的过表达在体内缓解了分解代谢物抑制,而 crcZ 突变则会阻止多种碳源的利用。sigma 因子 RpoN 和 CbrA/CbrB 双组分系统,已知其维持健康的碳氮平衡,是 crcZ 表达所必需的。在琥珀酸盐(首选碳源)上生长时,CrcZ 的表达水平较低,导致 amiE 和其他受 Crc 控制的基因受到分解代谢物抑制。相比之下,在甘露醇(较差的碳源)上生长时,CrcZ 水平的升高与分解代谢物抑制的缓解相关。在葡萄糖(中间碳源)上生长时,CrcZ 水平和 amiE 表达处于琥珀酸盐和甘露醇培养基之间。因此,CbrA-CbrB-CrcZ-Crc 系统使细菌能够对不同的碳源进行差异化适应。这个级联还以类似的方式调节了 xylS(benR)基因的表达,该基因编码参与苯甲酸降解的转录调节剂,证实了这个级联的全局作用。

相似文献

1
Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21866-71. doi: 10.1073/pnas.0910308106.
2
3
Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa carbon catabolite repression.
PLoS Genet. 2014 Jun 19;10(6):e1004440. doi: 10.1371/journal.pgen.1004440. eCollection 2014 Jun.
4
Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa.
J Bacteriol. 2011 Jun;193(11):2784-92. doi: 10.1128/JB.00164-11. Epub 2011 Apr 8.
5
6
Effect of Crc and Hfq proteins on the transcription, processing, and stability of the Pseudomonas putida CrcZ sRNA.
RNA. 2016 Dec;22(12):1902-1917. doi: 10.1261/rna.058313.116. Epub 2016 Oct 24.
7
CrcZ and CrcX regulate carbon source utilization in Pseudomonas syringae pathovar tomato strain DC3000.
RNA Biol. 2013 Feb;10(2):245-55. doi: 10.4161/rna.23019. Epub 2013 Jan 25.
8
Catabolite repression in Pseudomonas aeruginosa PAO1 regulates the uptake of C4 -dicarboxylates depending on succinate concentration.
Environ Microbiol. 2013 Jun;15(6):1707-16. doi: 10.1111/1462-2920.12056. Epub 2012 Dec 18.
10
The Pseudomonas aeruginosa CrcZ RNA interferes with Hfq-mediated riboregulation.
PLoS One. 2017 Jul 7;12(7):e0180887. doi: 10.1371/journal.pone.0180887. eCollection 2017.

引用本文的文献

1
Uridine as a potentiator of aminoglycosides through activation of carbohydrate transporters.
Sci Adv. 2025 Sep 5;11(36):eadw7630. doi: 10.1126/sciadv.adw7630.
3
All-at-once RNA folding with 3D motif prediction framed by evolutionary information.
bioRxiv. 2024 Dec 20:2024.12.17.628809. doi: 10.1101/2024.12.17.628809.
4
Combinatorial control of biofilm development by quorum-sensing and nutrient-sensing regulators.
mSystems. 2024 Sep 17;9(9):e0037224. doi: 10.1128/msystems.00372-24. Epub 2024 Aug 14.
7
Sphingosine induction of the hemolytic phospholipase C/sphingomyelinase (PlcH).
J Bacteriol. 2024 Mar 21;206(3):e0038223. doi: 10.1128/jb.00382-23. Epub 2024 Feb 27.
8
Aminoglycoside uptake, stress, and potentiation in Gram-negative bacteria: new therapies with old molecules.
Microbiol Mol Biol Rev. 2023 Dec 20;87(4):e0003622. doi: 10.1128/mmbr.00036-22. Epub 2023 Dec 4.
9
Spatial heterogeneity in biofilm metabolism elicited by local control of phenazine methylation.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2313208120. doi: 10.1073/pnas.2313208120. Epub 2023 Oct 17.
10
Fructose promotes pyoluteorin biosynthesis via the CbrAB-CrcZ-Hfq/Crc pathway in the biocontrol strain PA1201.
Synth Syst Biotechnol. 2023 Sep 21;8(4):618-628. doi: 10.1016/j.synbio.2023.09.004. eCollection 2023 Dec.

本文引用的文献

3
Carbon catabolite repression in bacteria: many ways to make the most out of nutrients.
Nat Rev Microbiol. 2008 Aug;6(8):613-24. doi: 10.1038/nrmicro1932.
7
Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour.
Mol Microbiol. 2008 Jan;67(2):241-53. doi: 10.1111/j.1365-2958.2007.06042.x. Epub 2007 Nov 28.
8
Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa.
J Bacteriol. 2007 Aug;189(15):5413-20. doi: 10.1128/JB.00432-07. Epub 2007 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验