Department of Materials Science and Technology, University of Crete, Heraklio, Greece.
J Biomed Mater Res A. 2013 Aug;101(8):2283-94. doi: 10.1002/jbm.a.34516. Epub 2013 Jan 27.
Engineering artificial scaffolds that enhance cell adhesion and growth in three dimensions is essential to successful bone tissue engineering. However, the fabrication of three-dimensional (3D) tissue scaffolds exhibiting complex micro- and nano-features still remains a challenge. Few materials can be structured in three dimensions, and even those have not been characterized for their mechanical and biological properties. In this study, we investigate the suitability of three novel materials of different chemical compositions in bone tissue regeneration: a hybrid material consisting of methacryloxypropyl trimethoxysilane and zirconium propoxide, a hybrid organic-inorganic material of the above containing 50 mole% 2-(dimethylamino)ethyl methacrylate (DMAEMA) and a pure organic material based on polyDMAEMA. More specifically, we study the mechanical properties of the aforementioned materials and evaluate the biological response of pre-osteoblastic cells on them. We also highlight the use of a 3D scaffolding technology, Direct femtosecond Laser Writing (DLW), to fabricate complex structures. Our results show that, while all three investigated materials could potentially be used as biomaterials in tissue engineering, the 50% DMAEMA composite exhibits the best mechanical properties for structure fabrication with DLW and strong biological response.
工程学人工支架,增强细胞在三维空间中的黏附和生长,对于成功的骨组织工程至关重要。然而,制造具有复杂微观和纳米特征的三维(3D)组织支架仍然是一个挑战。很少有材料可以在三维空间中构造,即使那些材料的机械和生物特性也尚未得到表征。在这项研究中,我们研究了三种不同化学成分的新型材料在骨组织再生中的适用性:一种由甲基丙烯酰氧基丙基三甲氧基硅烷和正丙氧基锆组成的混合材料,一种含有 50 摩尔% 2-(二甲基氨基)乙基甲基丙烯酸酯(DMAEMA)的上述混合有机-无机材料,以及一种基于聚 DMAEMA 的纯有机材料。更具体地说,我们研究了上述材料的机械性能,并评估了成骨前体细胞在它们上面的生物反应。我们还强调了使用 3D 支架技术,即直接飞秒激光写入(DLW),来制造复杂结构。我们的结果表明,虽然所有三种被研究的材料都有可能作为组织工程中的生物材料使用,但 50% DMAEMA 复合材料在使用 DLW 进行结构制造方面具有最佳的机械性能,并且具有强烈的生物反应。