Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon Lisbon, Portugal ; Institute for Systems and Robotics Lisbon, Portugal.
Front Neurol. 2013 Jan 25;4:1. doi: 10.3389/fneur.2013.00001. eCollection 2013.
Simultaneous electroencephalogram (EEG)-functional Magnetic Resonance Imaging (fMRI) recordings have seen growing application in the evaluation of epilepsy, namely in the characterization of brain networks related to epileptic activity. In EEG-correlated fMRI studies, epileptic events are usually described as boxcar signals based on the timing information retrieved from the EEG, and subsequently convolved with a hemodynamic response function to model the associated Blood Oxygen Level Dependent (BOLD) changes. Although more flexible approaches may allow a higher degree of complexity for the hemodynamics, the issue of how to model these dynamics based on the EEG remains an open question. In this work, a new methodology for the integration of simultaneous EEG-fMRI data in epilepsy is proposed, which incorporates a transfer function from the EEG to the BOLD signal. Independent component analysis of the EEG is performed, and a number of metrics expressing different models of the EEG-BOLD transfer function are extracted from the resulting time courses. These metrics are then used to predict the fMRI data and to identify brain areas associated with the EEG epileptic activity. The methodology was tested on both ictal and interictal EEG-fMRI recordings from one patient with a hypothalamic hamartoma. When compared to the conventional analysis approach, plausible, consistent, and more significant activations were obtained. Importantly, frequency-weighted EEG metrics yielded superior results than those weighted solely on the EEG power, which comes in agreement with previous literature. Reproducibility, specificity, and sensitivity should be addressed in an extended group of patients in order to further validate the proposed methodology and generalize the presented proof of concept.
同步脑电图 (EEG)-功能磁共振成像 (fMRI) 记录在癫痫评估中的应用越来越广泛,特别是在与癫痫活动相关的脑网络特征描述方面。在 EEG 相关 fMRI 研究中,癫痫事件通常根据从 EEG 中检索到的时间信息描述为方波信号,并随后与血液动力学响应函数卷积以模拟相关的血氧水平依赖 (BOLD) 变化。虽然更灵活的方法可以为血液动力学提供更高程度的复杂性,但如何根据 EEG 来建模这些动力学仍然是一个悬而未决的问题。在这项工作中,提出了一种新的癫痫症中同步 EEG-fMRI 数据整合的方法,该方法结合了从 EEG 到 BOLD 信号的传递函数。对 EEG 进行独立成分分析,并从得到的时程中提取表示 EEG-BOLD 传递函数不同模型的多种度量标准。然后,这些度量标准用于预测 fMRI 数据并识别与 EEG 癫痫活动相关的脑区。该方法在一名下丘脑错构瘤患者的癫痫发作和发作间期 EEG-fMRI 记录中进行了测试。与传统分析方法相比,获得了合理、一致且更显著的激活。重要的是,加权于 EEG 频率的 EEG 度量标准比仅基于 EEG 功率的那些产生了更好的结果,这与以前的文献一致。为了进一步验证所提出的方法并推广所提出的概念验证,应该在更大的患者群体中评估可重复性、特异性和敏感性。