Suppr超能文献

利用振荡基因电路的数学模型揭示拟南芥生物钟网络。

Mathematical modeling of an oscillating gene circuit to unravel the circadian clock network of Arabidopsis thaliana.

机构信息

Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research Cologne, Germany.

出版信息

Front Plant Sci. 2013 Jan 25;4:3. doi: 10.3389/fpls.2013.00003. eCollection 2013.

Abstract

The Arabidopsis thaliana circadian clock is an interconnected network highly tractable to systems approaches. Most elements in the transcriptional-translational oscillator were identified by genetic means and the expression of clock genes in various mutants led to the founding hypothesis of a positive-negative feedback loop being the core clock. The identification of additional clock genes beyond those defined in the core led to the use of systems approaches to decipher this angiosperm oscillator circuit. Kinetic modeling was first used to explain periodicity effects of various circadian mutants. This conformed in a flexible way to experimental details. Such observations allowed a recursive use of hypothesis generating from modeling, followed by experimental corroboration. More recently, the biochemical finding of new description of a DNA-binding activity for one class of clock components directed improvements in feature generation, one of which revealed that the core of the oscillator is a negative-negative feedback loop. The recursive use of modeling and experimental validation has thus revealed many essential transcriptional components that drive negative arms in the circadian oscillator. What awaits is to more fully describe the positive arms and an understanding of how additional pathways converge on the clock.

摘要

拟南芥生物钟是一个相互关联的网络,非常适合系统方法。转录翻译振荡器的大多数元件都是通过遗传手段确定的,并且在各种突变体中时钟基因的表达导致了一个正反馈-负反馈环作为核心时钟的基本假说。除了核心定义的时钟基因之外,其他时钟基因的鉴定促使人们使用系统方法来破译这个被子植物振荡器电路。动力学建模首先用于解释各种生物钟突变体的周期性效应。这以一种灵活的方式符合实验细节。这种观察允许从建模生成假设的递归使用,然后进行实验验证。最近,对一类生物钟成分的 DNA 结合活性的生化发现指导了特征生成的改进,其中之一表明振荡器的核心是一个负反馈-负反馈环。因此,建模和实验验证的递归使用揭示了许多驱动生物钟负臂的基本转录成分。等待的是更全面地描述正臂,并了解如何将其他途径集中在时钟上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0ad/3555133/af81c4cf5ec1/fpls-04-00003-g001.jpg

相似文献

1
Mathematical modeling of an oscillating gene circuit to unravel the circadian clock network of Arabidopsis thaliana.
Front Plant Sci. 2013 Jan 25;4:3. doi: 10.3389/fpls.2013.00003. eCollection 2013.
3
Newly described components and regulatory mechanisms of circadian clock function in Arabidopsis thaliana.
Mol Plant. 2012 May;5(3):545-53. doi: 10.1093/mp/ssr117. Epub 2012 Jan 9.
5
Modelling genetic networks with noisy and varied experimental data: the circadian clock in Arabidopsis thaliana.
J Theor Biol. 2005 Jun 7;234(3):383-93. doi: 10.1016/j.jtbi.2004.11.038. Epub 2005 Jan 22.
7
The circadian system of Arabidopsis thaliana: forward and reverse genetic approaches.
Chronobiol Int. 1999 Jan;16(1):1-16. doi: 10.3109/07420529908998708.
8
Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock.
Curr Biol. 2005 Jan 11;15(1):47-54. doi: 10.1016/j.cub.2004.12.067.
9
Recent advances in understanding regulation of the Arabidopsis circadian clock by local cellular environment.
F1000Res. 2020 Jan 27;9. doi: 10.12688/f1000research.21307.1. eCollection 2020.
10
ELONGATED HYPOCOTYL 5 mediates blue light signalling to the Arabidopsis circadian clock.
Plant J. 2018 Dec;96(6):1242-1254. doi: 10.1111/tpj.14106. Epub 2018 Oct 27.

引用本文的文献

1
Abundant clock proteins point to missing molecular regulation in the plant circadian clock.
Mol Syst Biol. 2025 Apr;21(4):361-389. doi: 10.1038/s44320-025-00086-5. Epub 2025 Feb 20.
2
Multiple metals influence distinct properties of the Arabidopsis circadian clock.
PLoS One. 2022 Apr 5;17(4):e0258374. doi: 10.1371/journal.pone.0258374. eCollection 2022.
3
An Optimal Time for Treatment-Predicting Circadian Time by Machine Learning and Mathematical Modelling.
Cancers (Basel). 2020 Oct 23;12(11):3103. doi: 10.3390/cancers12113103.
4
Early Detection of Daylengths with a Feedforward Circuit Coregulated by Circadian and Diurnal Cycles.
Biophys J. 2020 Nov 3;119(9):1878-1895. doi: 10.1016/j.bpj.2020.09.025. Epub 2020 Sep 29.
6
Gene Regulatory Network Inference: Connecting Plant Biology and Mathematical Modeling.
Front Genet. 2020 May 25;11:457. doi: 10.3389/fgene.2020.00457. eCollection 2020.
7
The ELF3-PIF7 Interaction Mediates the Circadian Gating of the Shade Response in Arabidopsis.
iScience. 2019 Dec 20;22:288-298. doi: 10.1016/j.isci.2019.11.029. Epub 2019 Nov 20.
8
Measuring Phytochrome-Dependent Light Input to the Plant Circadian Clock.
Methods Mol Biol. 2019;2026:179-192. doi: 10.1007/978-1-4939-9612-4_15.
9
Heat the Clock: Entrainment and Compensation in Circadian Rhythms.
J Circadian Rhythms. 2019 May 14;17:5. doi: 10.5334/jcr.179.
10
Physiological and Genetic Dissection of Sucrose Inputs to the Circadian System.
Genes (Basel). 2019 May 2;10(5):334. doi: 10.3390/genes10050334.

本文引用的文献

1
Background-dependent effects of polyglutamine variation in the Arabidopsis thaliana gene ELF3.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19363-7. doi: 10.1073/pnas.1211021109. Epub 2012 Nov 5.
2
Non-transcriptional oscillators in circadian timekeeping.
Trends Biochem Sci. 2012 Nov;37(11):484-92. doi: 10.1016/j.tibs.2012.07.006. Epub 2012 Aug 20.
4
Entrainment of the mammalian cell cycle by the circadian clock: modeling two coupled cellular rhythms.
PLoS Comput Biol. 2012 May;8(5):e1002516. doi: 10.1371/journal.pcbi.1002516. Epub 2012 May 31.
5
6
FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering.
Science. 2012 May 25;336(6084):1045-9. doi: 10.1126/science.1219644.
7
Peroxiredoxins are conserved markers of circadian rhythms.
Nature. 2012 May 16;485(7399):459-64. doi: 10.1038/nature11088.
8
Generic temperature compensation of biological clocks by autonomous regulation of catalyst concentration.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8109-14. doi: 10.1073/pnas.1120711109. Epub 2012 May 7.
9
Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8328-33. doi: 10.1073/pnas.1120496109. Epub 2012 May 7.
10
Starch turnover: pathways, regulation and role in growth.
Curr Opin Plant Biol. 2012 Jun;15(3):282-92. doi: 10.1016/j.pbi.2012.03.016. Epub 2012 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验