Suppr超能文献

多峰脂肪校正复合 R2*弛豫率定量:理论、优化和临床验证。

Multipeak fat-corrected complex R2* relaxometry: theory, optimization, and clinical validation.

机构信息

Departments of Radiology, University of Wisconsin, Madison, Wisconsin, USA.

出版信息

Magn Reson Med. 2013 Nov;70(5):1319-31. doi: 10.1002/mrm.24593. Epub 2013 Jan 28.

Abstract

PURPOSE

To develop R2* mapping techniques corrected for confounding factors and optimized for noise performance.

THEORY AND METHODS

Conventional R2* mapping is affected by two key confounding factors: noise-related bias and the presence of fat in tissue. Noise floor effects introduce bias in magnitude-based reconstructions, particularly at high R2* values. The presence of fat, if uncorrected, introduces severe protocol-dependent bias. In this work, the bias/noise properties of different R2* mapping reconstructions (magnitude- and complex-fitting, fat-uncorrected, and fat-corrected) are characterized using Cramer-Rao Bound analysis, simulations, and in vivo data. A framework for optimizing the choice of echo times is provided. Finally, the robustness of liver R2* mapping in the presence of fat is evaluated in 28 subjects.

RESULTS

Fat-corrected R2* mapping removes fat-related bias without noise penalty over a wide range of R2* values. Complex nonlinear least-squares fitted and fat-corrected R2* reconstructions that account for the spectral complexity of fat provide robust R2* estimates with low bias and optimized noise performance over a wide range of echo times combinations and R2* values.

CONCLUSION

The use of complex fitting and fat-correction improves the robustness, noise performance, and accuracy of R2* measurements, and are necessary to establish R2* as quantitative imaging biomarker in the liver.

摘要

目的

开发校正混杂因素并针对噪声性能进行优化的 R2* 映射技术。

理论与方法

传统的 R2* 映射受两个关键混杂因素的影响:与噪声相关的偏差和组织中脂肪的存在。噪声基底效应在基于幅度的重建中引入偏差,特别是在高 R2* 值时。如果未校正脂肪的存在,会引入严重的协议依赖性偏差。在这项工作中,使用 Cramer-Rao 界分析、模拟和体内数据来描述不同 R2* 映射重建(幅度和复数拟合、未校正脂肪和校正脂肪)的偏差/噪声特性。提供了优化回波时间选择的框架。最后,在 28 个受试者中评估了肝脏 R2* 映射在脂肪存在下的稳健性。

结果

校正脂肪的 R2* 映射在广泛的 R2* 值范围内消除了脂肪相关的偏差,而不会产生噪声惩罚。考虑脂肪光谱复杂性的复数非线性最小二乘拟合和校正脂肪的 R2* 重建提供了稳健的 R2* 估计值,具有低偏差和优化的噪声性能,适用于广泛的回波时间组合和 R2* 值。

结论

使用复数拟合和脂肪校正可以提高 R2* 测量的稳健性、噪声性能和准确性,并且对于在肝脏中建立 R2* 作为定量成像生物标志物是必要的。

相似文献

1
Multipeak fat-corrected complex R2* relaxometry: theory, optimization, and clinical validation.
Magn Reson Med. 2013 Nov;70(5):1319-31. doi: 10.1002/mrm.24593. Epub 2013 Jan 28.
3
Rapid look-up table method for noise-corrected curve fitting in the R2* mapping of iron loaded liver.
Magn Reson Med. 2015 Feb;73(2):865-71. doi: 10.1002/mrm.25184. Epub 2014 Apr 4.
5
R2* estimation using "in-phase" echoes in the presence of fat: the effects of complex spectrum of fat.
J Magn Reson Imaging. 2013 Mar;37(3):717-26. doi: 10.1002/jmri.23851. Epub 2012 Oct 10.
6
Improved MRI R2 * relaxometry of iron-loaded liver with noise correction.
Magn Reson Med. 2013 Dec;70(6):1765-74. doi: 10.1002/mrm.24607. Epub 2013 Jan 28.
8
Quantification of liver fat in the presence of iron overload.
J Magn Reson Imaging. 2017 Feb;45(2):428-439. doi: 10.1002/jmri.25382. Epub 2016 Jul 13.
9
A novel semiautomatic parenchyma extraction method for improved MRI R2* relaxometry of iron loaded liver.
J Magn Reson Imaging. 2014 Jul;40(1):67-78. doi: 10.1002/jmri.24331. Epub 2013 Oct 29.
10
On the performance of T2* correction methods for quantification of hepatic fat content.
Magn Reson Med. 2012 Feb;67(2):389-404. doi: 10.1002/mrm.23016. Epub 2011 Jun 9.

引用本文的文献

4
5D image reconstruction exploiting space-motion-echo sparsity for accelerated free-breathing quantitative liver MRI.
Med Image Anal. 2025 May;102:103532. doi: 10.1016/j.media.2025.103532. Epub 2025 Mar 19.
5
Practical approach to quantitative liver and pancreas MRI in children.
Pediatr Radiol. 2025 Jan;55(1):36-57. doi: 10.1007/s00247-024-06133-x. Epub 2025 Jan 6.
9
State-of-the-Art Quantification of Liver Iron With MRI-Vendor Implementation and Available Tools.
J Magn Reson Imaging. 2025 Mar;61(3):1110-1132. doi: 10.1002/jmri.29526. Epub 2024 Aug 12.
10
Free-breathing MRI techniques for fat and R* quantification in the liver.
MAGMA. 2024 Aug;37(4):583-602. doi: 10.1007/s10334-024-01187-2. Epub 2024 Jul 23.

本文引用的文献

1
R*(2) mapping in the presence of macroscopic B₀ field variations.
Magn Reson Med. 2012 Sep;68(3):830-40. doi: 10.1002/mrm.23306. Epub 2011 Dec 9.
2
Validation of MRI biomarkers of hepatic steatosis in the presence of iron overload in the ob/ob mouse.
J Magn Reson Imaging. 2012 Apr;35(4):844-51. doi: 10.1002/jmri.22890. Epub 2011 Nov 29.
3
In vivo characterization of the liver fat ¹H MR spectrum.
NMR Biomed. 2011 Aug;24(7):784-90. doi: 10.1002/nbm.1622. Epub 2010 Dec 12.
4
Motion-sensitized driven equilibrium for blood-suppressed T2* mapping.
J Magn Reson Imaging. 2011 Sep;34(3):702-9. doi: 10.1002/jmri.22664. Epub 2011 Jul 18.
5
Addressing phase errors in fat-water imaging using a mixed magnitude/complex fitting method.
Magn Reson Med. 2012 Mar;67(3):638-44. doi: 10.1002/mrm.23044. Epub 2011 Jun 28.
6
Respiratory self-gated multiple gradient recalled echo sequence for free-breathing abdominal R2* mapping.
Magn Reson Med. 2011 Jul;66(1):207-12. doi: 10.1002/mrm.22823. Epub 2011 Feb 24.
7
Estimation of liver T₂ in transfusion-related iron overload in patients with weighted least squares T₂ IDEAL.
Magn Reson Med. 2012 Jan;67(1):183-90. doi: 10.1002/mrm.22986. Epub 2011 May 13.
9
On T2* magnetic resonance and cardiac iron.
Circulation. 2011 Apr 12;123(14):1519-28. doi: 10.1161/CIRCULATIONAHA.110.007641. Epub 2011 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验