Departments of Radiology, University of Wisconsin, Madison, Wisconsin, USA.
Magn Reson Med. 2013 Nov;70(5):1319-31. doi: 10.1002/mrm.24593. Epub 2013 Jan 28.
To develop R2* mapping techniques corrected for confounding factors and optimized for noise performance.
Conventional R2* mapping is affected by two key confounding factors: noise-related bias and the presence of fat in tissue. Noise floor effects introduce bias in magnitude-based reconstructions, particularly at high R2* values. The presence of fat, if uncorrected, introduces severe protocol-dependent bias. In this work, the bias/noise properties of different R2* mapping reconstructions (magnitude- and complex-fitting, fat-uncorrected, and fat-corrected) are characterized using Cramer-Rao Bound analysis, simulations, and in vivo data. A framework for optimizing the choice of echo times is provided. Finally, the robustness of liver R2* mapping in the presence of fat is evaluated in 28 subjects.
Fat-corrected R2* mapping removes fat-related bias without noise penalty over a wide range of R2* values. Complex nonlinear least-squares fitted and fat-corrected R2* reconstructions that account for the spectral complexity of fat provide robust R2* estimates with low bias and optimized noise performance over a wide range of echo times combinations and R2* values.
The use of complex fitting and fat-correction improves the robustness, noise performance, and accuracy of R2* measurements, and are necessary to establish R2* as quantitative imaging biomarker in the liver.
开发校正混杂因素并针对噪声性能进行优化的 R2* 映射技术。
传统的 R2* 映射受两个关键混杂因素的影响:与噪声相关的偏差和组织中脂肪的存在。噪声基底效应在基于幅度的重建中引入偏差,特别是在高 R2* 值时。如果未校正脂肪的存在,会引入严重的协议依赖性偏差。在这项工作中,使用 Cramer-Rao 界分析、模拟和体内数据来描述不同 R2* 映射重建(幅度和复数拟合、未校正脂肪和校正脂肪)的偏差/噪声特性。提供了优化回波时间选择的框架。最后,在 28 个受试者中评估了肝脏 R2* 映射在脂肪存在下的稳健性。
校正脂肪的 R2* 映射在广泛的 R2* 值范围内消除了脂肪相关的偏差,而不会产生噪声惩罚。考虑脂肪光谱复杂性的复数非线性最小二乘拟合和校正脂肪的 R2* 重建提供了稳健的 R2* 估计值,具有低偏差和优化的噪声性能,适用于广泛的回波时间组合和 R2* 值。
使用复数拟合和脂肪校正可以提高 R2* 测量的稳健性、噪声性能和准确性,并且对于在肝脏中建立 R2* 作为定量成像生物标志物是必要的。