Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
PLoS Comput Biol. 2013;9(1):e1002878. doi: 10.1371/journal.pcbi.1002878. Epub 2013 Jan 24.
The PhoQP two-component system is a signaling complex essential for bacterial virulence and cationic antimicrobial peptide resistance. PhoQ is the histidine kinase chemoreceptor of this tandem machine and assembles in a homodimer conformation spanning the bacterial inner membrane. Currently, a full understanding of the PhoQ signal transduction is hindered by the lack of a complete atomistic structure. In this study, an atomistic model of the key transmembrane (TM) domain is assembled by using molecular simulations, guided by experimental cross-linking data. The formation of a polar pocket involving Asn202 in the lumen of the tetrameric TM bundle is crucial for the assembly and solvation of the domain. Moreover, a concerted displacement of the TM helices at the periplasmic side is found to modulate a rotation at the cytoplasmic end, supporting the transduction of the chemical signal through a combination of scissoring and rotational movement of the TM helices.
PhoQP 双组分系统是一种信号复合物,对细菌的毒力和阳离子抗菌肽的抗性至关重要。PhoQ 是该串联机器的组氨酸激酶化学感受器,以横跨细菌内膜的同源二聚体构象组装。目前,由于缺乏完整的原子结构,PhoQ 信号转导的全面理解受到阻碍。在这项研究中,通过使用分子模拟,根据实验交联数据,组装了关键跨膜 (TM) 结构域的原子模型。涉及四聚体 TM 束腔中的 Asn202 的极性口袋的形成对于该结构域的组装和溶剂化至关重要。此外,发现周质侧 TM 螺旋的协同位移会调节细胞质末端的旋转,通过 TM 螺旋的切割和旋转运动的组合,支持化学信号的转导。