Suppr超能文献

超图可观测性的几何方面

Geometric Aspects of Observability of Hypergraphs.

作者信息

Pickard Joshua, Stansbury Cooper, Surana Amit, Rajapakse Indika, Bloch Anthony

机构信息

Department of Computational Medicine & Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI 48109 USA.

RTX Technology Research Center, East Hartford, CT 06108 USA.

出版信息

IFAC Pap OnLine. 2024;58(6):321-326. doi: 10.1016/j.ifacol.2024.08.301. Epub 2024 Sep 25.

Abstract

In this paper we consider aspects of geometric observability for hypergraphs, extending our earlier work from the uniform to the nonuniform case. Hypergraphs, a generalization of graphs, allow hyperedges to connect multiple nodes and unambiguously represent multi-way relationships which are ubiquitous in many real-world networks including those that arise in biology. We consider polynomial dynamical systems with linear outputs defined according to hypergraph structure, and we propose methods to evaluate local, weak observability.

摘要

在本文中,我们考虑超图的几何可观性方面,将我们早期的工作从均匀情况扩展到非均匀情况。超图是图的一种推广,它允许超边连接多个节点,并能明确表示多向关系,这种关系在许多现实世界的网络中普遍存在,包括生物学中出现的网络。我们考虑根据超图结构定义线性输出的多项式动力系统,并提出评估局部弱可观性的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cbf/12140105/ac77d8eb88be/nihms-2082661-f0001.jpg

相似文献

1
Geometric Aspects of Observability of Hypergraphs.超图可观测性的几何方面
IFAC Pap OnLine. 2024;58(6):321-326. doi: 10.1016/j.ifacol.2024.08.301. Epub 2024 Sep 25.
2
Analyzing Dynamic Hypergraphs with Parallel Aggregated Ordered Hypergraph Visualization.使用并行聚合有序超图可视化分析动态超图
IEEE Trans Vis Comput Graph. 2021 Jan;27(1):1-13. doi: 10.1109/TVCG.2019.2933196. Epub 2020 Nov 24.
4
Theory of percolation on hypergraphs.超图上的渗流理论。
Phys Rev E. 2024 Jan;109(1-1):014306. doi: 10.1103/PhysRevE.109.014306.
5
Generative hypergraph models and spectral embedding.生成超图模型和谱嵌入。
Sci Rep. 2023 Jan 11;13(1):540. doi: 10.1038/s41598-023-27565-9.
6
Social Influence Maximization in Hypergraphs.超图中的社会影响力最大化
Entropy (Basel). 2021 Jun 23;23(7):796. doi: 10.3390/e23070796.
8
Adaptive Neural Message Passing for Inductive Learning on Hypergraphs.用于超图归纳学习的自适应神经消息传递
IEEE Trans Pattern Anal Mach Intell. 2025 Jan;47(1):19-31. doi: 10.1109/TPAMI.2024.3434483. Epub 2024 Dec 4.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验