Suppr超能文献

利用对抗代理识别调控。

Identifying regulation with adversarial surrogates.

机构信息

Viterbi Department of Electrical & Computer Engineering, Technion, Israel Institute of Technology, 32000 Haifa, Israel.

Network Biology Research Lab, Technion, Israel Institute of Technology, 32000 Haifa, Israel.

出版信息

Proc Natl Acad Sci U S A. 2023 Mar 21;120(12):e2216805120. doi: 10.1073/pnas.2216805120. Epub 2023 Mar 15.

Abstract

Homeostasis, the ability to maintain a relatively constant internal environment in the face of perturbations, is a hallmark of biological systems. It is believed that this constancy is achieved through multiple internal regulation and control processes. Given observations of a system, or even a detailed model of one, it is both valuable and extremely challenging to extract the control objectives of the homeostatic mechanisms. In this work, we develop a robust data-driven method to identify these objectives, namely to understand: "what does the system care about?". We propose an algorithm, Identifying Regulation with Adversarial Surrogates (IRAS), that receives an array of temporal measurements of the system and outputs a candidate for the control objective, expressed as a combination of observed variables. IRAS is an iterative algorithm consisting of two competing players. The first player, realized by an artificial deep neural network, aims to minimize a measure of invariance we refer to as the coefficient of regulation. The second player aims to render the task of the first player more difficult by forcing it to extract information about the temporal structure of the data, which is absent from similar "surrogate" data. We test the algorithm on four synthetic and one natural data set, demonstrating excellent empirical results. Interestingly, our approach can also be used to extract conserved quantities, e.g., energy and momentum, in purely physical systems, as we demonstrate empirically.

摘要

稳态是指生物系统在面对干扰时能够维持相对恒定的内部环境的能力。人们认为,这种恒定性是通过多种内部调节和控制过程实现的。给定系统的观测值,甚至是其详细模型,提取稳态机制的控制目标既是有价值的,也是极具挑战性的。在这项工作中,我们开发了一种稳健的数据驱动方法来识别这些目标,即理解“系统关心什么”。我们提出了一种算法,名为对抗性代理识别调控(IRAS),它接收系统的一系列时间测量值,并输出控制目标的候选值,用观察变量的组合表示。IRAS 是一个由两个竞争参与者组成的迭代算法。第一个参与者由一个人工深度神经网络实现,旨在最小化我们称之为调控系数的不变性度量。第二个参与者旨在通过迫使第一个参与者提取数据时间结构的信息来增加任务的难度,而这些信息在类似的“代理”数据中是不存在的。我们在四个合成数据集和一个自然数据集上测试了该算法,结果表明其实验效果非常好。有趣的是,我们的方法还可以用于提取纯物理系统中的守恒量,例如能量和动量,我们通过实证证明了这一点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/208a/10041131/3590d55640fb/pnas.2216805120fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验