Suppr超能文献

最小约束飞行蝗虫对逼近刺激的避碰行为。

Collision-avoidance behaviors of minimally restrained flying locusts to looming stimuli.

机构信息

Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.

出版信息

J Exp Biol. 2013 Feb 15;216(Pt 4):641-55. doi: 10.1242/jeb.077453.

Abstract

Visually guided collision avoidance is of paramount importance in flight, for instance to allow escape from potential predators. Yet, little is known about the types of collision-avoidance behaviors that may be generated by flying animals in response to an impending visual threat. We studied the behavior of minimally restrained locusts flying in a wind tunnel as they were subjected to looming stimuli presented to the side of the animal, simulating the approach of an object on a collision course. Using high-speed movie recordings, we observed a wide variety of collision-avoidance behaviors including climbs and dives away from - but also towards - the stimulus. In a more restrained setting, we were able to relate kinematic parameters of the flapping wings with yaw changes in the trajectory of the animal. Asymmetric wing flapping was most strongly correlated with changes in yaw, but we also observed a substantial effect of wing deformations. Additionally, the effect of wing deformations on yaw was relatively independent of that of wing asymmetries. Thus, flying locusts exhibit a rich range of collision-avoidance behaviors that depend on several distinct aerodynamic characteristics of wing flapping flight.

摘要

在飞行中,视觉引导的避碰至关重要,例如可以让动物躲避潜在的捕食者。然而,对于飞行动物在面临即将到来的视觉威胁时可能产生的避碰行为类型,我们知之甚少。我们在风洞中研究了最小约束的蝗虫的行为,当它们受到模拟物体碰撞路径的侧面逼近的突现刺激时,它们在飞行中。使用高速电影记录,我们观察到各种各样的避碰行为,包括远离但也朝向刺激的爬升和俯冲。在更受约束的环境中,我们能够将翅膀拍打运动的运动学参数与动物轨迹的偏航变化联系起来。不对称的翅膀拍打与偏航的变化最密切相关,但我们也观察到翅膀变形的显著影响。此外,翅膀变形对偏航的影响相对独立于翅膀不对称的影响。因此,飞行蝗虫表现出丰富的避碰行为,这些行为依赖于翅膀拍打飞行的几个不同的空气动力学特征。

相似文献

1
Collision-avoidance behaviors of minimally restrained flying locusts to looming stimuli.
J Exp Biol. 2013 Feb 15;216(Pt 4):641-55. doi: 10.1242/jeb.077453.
2
Role of wing pronation in evasive steering of locusts.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Jul;198(7):541-55. doi: 10.1007/s00359-012-0728-z. Epub 2012 May 1.
3
Gliding behaviour elicited by lateral looming stimuli in flying locusts.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Jan;191(1):61-73. doi: 10.1007/s00359-004-0572-x. Epub 2004 Nov 19.
6
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
Science. 2009 Sep 18;325(5947):1549-52. doi: 10.1126/science.1175928.
7
Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke?
J R Soc Interface. 2009 Sep 6;6(38):735-47. doi: 10.1098/rsif.2008.0435. Epub 2008 Dec 16.
8
Role of an identified looming-sensitive neuron in triggering a flying locust's escape.
J Neurophysiol. 2006 Jun;95(6):3391-400. doi: 10.1152/jn.00024.2006. Epub 2006 Feb 1.
10
Efficiency of lift production in flapping and gliding flight of swifts.
PLoS One. 2014 Feb 28;9(2):e90170. doi: 10.1371/journal.pone.0090170. eCollection 2014.

引用本文的文献

1
A Looming Spatial Localization Neural Network Inspired by MLG1 Neurons in the Crab .
Front Neurosci. 2022 Jan 21;15:787256. doi: 10.3389/fnins.2021.787256. eCollection 2021.
4
Interaction of compass sensing and object-motion detection in the locust central complex.
J Neurophysiol. 2017 Jul 1;118(1):496-506. doi: 10.1152/jn.00927.2016. Epub 2017 Apr 12.
5
Simplified bionic solutions: a simple bio-inspired vehicle collision detection system.
Bioinspir Biomim. 2017 Feb 15;12(2):026007. doi: 10.1088/1748-3190/aa5993.
7
Responses of a pair of flying locusts to lateral looming visual stimuli.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Aug;200(8):723-38. doi: 10.1007/s00359-014-0916-0. Epub 2014 May 10.

本文引用的文献

1
Behavioral responses to visual overstimulation in the cockroach Periplaneta americana L.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Dec;203(12):1007-1015. doi: 10.1007/s00359-017-1210-8. Epub 2017 Sep 7.
2
Role of wing pronation in evasive steering of locusts.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Jul;198(7):541-55. doi: 10.1007/s00359-012-0728-z. Epub 2012 May 1.
3
Collision detection as a model for sensory-motor integration.
Annu Rev Neurosci. 2011;34:1-19. doi: 10.1146/annurev-neuro-061010-113632.
5
Synchronized neural input shapes stimulus selectivity in a collision-detecting neuron.
Curr Biol. 2010 Nov 23;20(22):2052-7. doi: 10.1016/j.cub.2010.10.025. Epub 2010 Nov 4.
6
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
Science. 2009 Sep 18;325(5947):1549-52. doi: 10.1126/science.1175928.
7
Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke?
J R Soc Interface. 2009 Sep 6;6(38):735-47. doi: 10.1098/rsif.2008.0435. Epub 2008 Dec 16.
8
Cockroaches keep predators guessing by using preferred escape trajectories.
Curr Biol. 2008 Nov 25;18(22):1792-6. doi: 10.1016/j.cub.2008.09.062. Epub 2008 Nov 13.
10
Arousal facilitates collision avoidance mediated by a looming sensitive visual neuron in a flying locust.
J Neurophysiol. 2008 Aug;100(2):670-80. doi: 10.1152/jn.01055.2007. Epub 2008 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验