Suppr超能文献

预后特征的意义分析。

Significance analysis of prognostic signatures.

机构信息

Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2013;9(1):e1002875. doi: 10.1371/journal.pcbi.1002875. Epub 2013 Jan 24.

Abstract

A major goal in translational cancer research is to identify biological signatures driving cancer progression and metastasis. A common technique applied in genomics research is to cluster patients using gene expression data from a candidate prognostic gene set, and if the resulting clusters show statistically significant outcome stratification, to associate the gene set with prognosis, suggesting its biological and clinical importance. Recent work has questioned the validity of this approach by showing in several breast cancer data sets that "random" gene sets tend to cluster patients into prognostically variable subgroups. This work suggests that new rigorous statistical methods are needed to identify biologically informative prognostic gene sets. To address this problem, we developed Significance Analysis of Prognostic Signatures (SAPS) which integrates standard prognostic tests with a new prognostic significance test based on stratifying patients into prognostic subtypes with random gene sets. SAPS ensures that a significant gene set is not only able to stratify patients into prognostically variable groups, but is also enriched for genes showing strong univariate associations with patient prognosis, and performs significantly better than random gene sets. We use SAPS to perform a large meta-analysis (the largest completed to date) of prognostic pathways in breast and ovarian cancer and their molecular subtypes. Our analyses show that only a small subset of the gene sets found statistically significant using standard measures achieve significance by SAPS. We identify new prognostic signatures in breast and ovarian cancer and their corresponding molecular subtypes, and we show that prognostic signatures in ER negative breast cancer are more similar to prognostic signatures in ovarian cancer than to prognostic signatures in ER positive breast cancer. SAPS is a powerful new method for deriving robust prognostic biological signatures from clinically annotated genomic datasets.

摘要

癌症转化研究的一个主要目标是确定驱动癌症进展和转移的生物学特征。在基因组学研究中,一种常用的技术是使用候选预后基因集的基因表达数据对患者进行聚类,如果得到的聚类在统计学上显示出明显的预后分层,则将基因集与预后相关联,表明其具有生物学和临床重要性。最近的研究通过在几个乳腺癌数据集上表明“随机”基因集往往会将患者聚类为预后可变的亚组,对这种方法的有效性提出了质疑。这项工作表明,需要新的严格的统计方法来识别具有生物学意义的预后基因集。为了解决这个问题,我们开发了预后标志物显著性分析(Significance Analysis of Prognostic Signatures,SAPS),它将标准预后测试与基于用随机基因集将患者分层为预后亚型的新预后显著性测试相结合。SAPS 确保显著的基因集不仅能够将患者分层为预后可变的组,而且还富集了与患者预后具有强烈单变量关联的基因,并且比随机基因集表现更好。我们使用 SAPS 对乳腺癌和卵巢癌及其分子亚型中的预后途径进行了大规模的荟萃分析(迄今为止最大规模的完成分析)。我们的分析表明,仅使用标准方法发现具有统计学意义的基因集中的一小部分子集通过 SAPS 达到了显著性。我们在乳腺癌和卵巢癌及其相应的分子亚型中发现了新的预后标志物,并表明 ER 阴性乳腺癌中的预后标志物与卵巢癌中的预后标志物比 ER 阳性乳腺癌中的预后标志物更相似。SAPS 是一种从临床注释基因组数据集中提取稳健预后生物学标志物的强大新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/3554539/5e0c1b0d49c8/pcbi.1002875.g001.jpg

相似文献

1
Significance analysis of prognostic signatures.
PLoS Comput Biol. 2013;9(1):e1002875. doi: 10.1371/journal.pcbi.1002875. Epub 2013 Jan 24.
5
Refinement of breast cancer risk prediction with concordant leading edge subsets from prognostic gene signatures.
Breast Cancer Res Treat. 2014 Sep;147(2):353-70. doi: 10.1007/s10549-014-3104-6. Epub 2014 Aug 27.
7
Significant random signatures reveals new biomarker for breast cancer.
BMC Med Genomics. 2019 Nov 8;12(1):160. doi: 10.1186/s12920-019-0609-1.
8
Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer.
J Natl Cancer Inst. 2014 Apr 3;106(5):dju049. doi: 10.1093/jnci/dju049.
9
Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer.
J Natl Cancer Inst. 2011 Feb 2;103(3):264-72. doi: 10.1093/jnci/djq524. Epub 2010 Dec 29.
10
Genes and functions from breast cancer signatures.
BMC Cancer. 2018 Apr 27;18(1):473. doi: 10.1186/s12885-018-4388-4.

引用本文的文献

1
Clinical and molecular analysis of cilia-associated gene signature for prognostic prediction in glioma.
J Cancer Res Clin Oncol. 2023 Oct;149(13):11443-11455. doi: 10.1007/s00432-023-05022-4. Epub 2023 Jun 30.
2
Tumor mutational burden predicts survival in patients with low-grade gliomas expressing mutated IDH1.
Neurooncol Adv. 2020 Mar 27;2(1):vdaa042. doi: 10.1093/noajnl/vdaa042. eCollection 2020 Jan-Dec.
3
Identification of differentially expressed gene sets using the Generalized Berk-Jones statistic.
Bioinformatics. 2019 Nov 1;35(22):4568-4576. doi: 10.1093/bioinformatics/btz277.
5
Data Analysis Strategies in Medical Imaging.
Clin Cancer Res. 2018 Aug 1;24(15):3492-3499. doi: 10.1158/1078-0432.CCR-18-0385. Epub 2018 Mar 26.
6
Combining inferred regulatory and reconstructed metabolic networks enhances phenotype prediction in yeast.
PLoS Comput Biol. 2017 May 17;13(5):e1005489. doi: 10.1371/journal.pcbi.1005489. eCollection 2017 May.
7
Disease Biomarkers for Precision Medicine: Challenges and Future Opportunities.
Genomics Proteomics Bioinformatics. 2017 Apr;15(2):57-58. doi: 10.1016/j.gpb.2017.04.001. Epub 2017 Apr 7.
8
The molecular basis of breast cancer pathological phenotypes.
J Pathol. 2017 Feb;241(3):375-391. doi: 10.1002/path.4847. Epub 2016 Dec 29.
9
Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors.
PLoS One. 2016 Mar 17;11(3):e0151089. doi: 10.1371/journal.pone.0151089. eCollection 2016.
10
The Relationship of Immune Cell Signatures to Patient Survival Varies within and between Tumor Types.
PLoS One. 2015 Sep 23;10(9):e0138726. doi: 10.1371/journal.pone.0138726. eCollection 2015.

本文引用的文献

1
Comprehensive molecular portraits of human breast tumours.
Nature. 2012 Oct 4;490(7418):61-70. doi: 10.1038/nature11412. Epub 2012 Sep 23.
2
Angiogenic mRNA and microRNA gene expression signature predicts a novel subtype of serous ovarian cancer.
PLoS One. 2012;7(2):e30269. doi: 10.1371/journal.pone.0030269. Epub 2012 Feb 13.
3
A three-gene model to robustly identify breast cancer molecular subtypes.
J Natl Cancer Inst. 2012 Feb 22;104(4):311-25. doi: 10.1093/jnci/djr545. Epub 2012 Jan 18.
4
Most random gene expression signatures are significantly associated with breast cancer outcome.
PLoS Comput Biol. 2011 Oct;7(10):e1002240. doi: 10.1371/journal.pcbi.1002240. Epub 2011 Oct 20.
5
survcomp: an R/Bioconductor package for performance assessment and comparison of survival models.
Bioinformatics. 2011 Nov 15;27(22):3206-8. doi: 10.1093/bioinformatics/btr511. Epub 2011 Sep 7.
6
Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer.
J Natl Cancer Inst. 2011 Feb 2;103(3):264-72. doi: 10.1093/jnci/djq524. Epub 2010 Dec 29.
7
A gene expression signature identifies two prognostic subgroups of basal breast cancer.
Breast Cancer Res Treat. 2011 Apr;126(2):407-20. doi: 10.1007/s10549-010-0897-9. Epub 2010 May 21.
9
Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer.
J Clin Oncol. 2010 Mar 1;28(7):1145-53. doi: 10.1200/JCO.2009.22.4725. Epub 2010 Jan 25.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验