Benjamin Ben V, Arthur John V, Gao Peiran, Merolla Paul, Boahen Kwabena
Electrical Engineering and P. Gao and K. Boahen are with Bioengineering, Stanford University, Stanford, CA, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:771-4. doi: 10.1109/EMBC.2012.6346045.
We present a novel log-domain silicon synapse designed for subthreshold analog operation that emulates common synaptic interactions found in biology. Our circuit models the dynamic gating of ion-channel conductances by emulating the processes of neurotransmitter release-reuptake and receptor binding-unbinding in a superposable fashion: Only a single circuit is required to model the entire population of synapses (of a given type) that a biological neuron receives. Unlike previous designs, which are strictly excitatory or inhibitory, our silicon synapse implements-for the first time in the log-domain-a programmable reversal potential (i.e., driving force). To demonstrate our design's scalability, we fabricated in 180nm CMOS an array of 64K silicon neurons, each with four independent superposable synapse circuits occupying 11.0×21.5 µm(2) apiece. After verifying that these synapses have the predicted effect on the neurons' spike rate, we explored a recurrent network where the synapses' reversal potentials are set near the neurons' threshold, acting as shunts. These shunting synapses synchronized neuronal spiking more robustly than nonshunting synapses, confirming that reversal potentials can have important network-level implications.
我们展示了一种新颖的对数域硅突触,专为亚阈值模拟操作而设计,它模拟了生物学中常见的突触相互作用。我们的电路通过以可叠加的方式模拟神经递质释放 - 再摄取和受体结合 - 解离的过程,对离子通道电导的动态门控进行建模:只需一个电路即可对生物神经元接收的整个(给定类型的)突触群体进行建模。与以前严格为兴奋性或抑制性的设计不同,我们的硅突触在对数域中首次实现了可编程的反转电位(即驱动力)。为了展示我们设计的可扩展性,我们在180nm CMOS工艺中制造了一个由64K个硅神经元组成的阵列,每个神经元具有四个独立的可叠加突触电路,每个电路占用面积为11.0×21.5 µm²。在验证这些突触对神经元的放电率有预期影响后,我们探索了一个循环网络,其中突触的反转电位设置在神经元阈值附近,起到分流作用。这些分流突触比非分流突触更能稳健地同步神经元放电,证实了反转电位可能具有重要的网络层面影响。