Bioinspired VLSI Circuits and Systems Group, Department of Bioengineering, Imperial College London London, UK.
Institute of Neuroinformatics, University of Zurich and ETH Zurich Zurich, Switzerland.
Front Neurosci. 2015 Jan 20;8:428. doi: 10.3389/fnins.2014.00428. eCollection 2014.
The field of neuromorphic silicon synapse circuits is revisited and a parsimonious mathematical framework able to describe the dynamics of this class of log-domain circuits in the aggregate and in a systematic manner is proposed. Starting from the Bernoulli Cell Formalism (BCF), originally formulated for the modular synthesis and analysis of externally linear, time-invariant logarithmic filters, and by means of the identification of new types of Bernoulli Cell (BC) operators presented here, a generalized formalism (GBCF) is established. The expanded formalism covers two new possible and practical combinations of a MOS transistor (MOST) and a linear capacitor. The corresponding mathematical relations codifying each case are presented and discussed through the tutorial treatment of three well-known transistor-level examples of log-domain neuromorphic silicon synapses. The proposed mathematical tool unifies past analysis approaches of the same circuits under a common theoretical framework. The speed advantage of the proposed mathematical framework as an analysis tool is also demonstrated by a compelling comparative circuit analysis example of high order, where the GBCF and another well-known log-domain circuit analysis method are used for the determination of the input-output transfer function of the high (4(th)) order topology.
神经形态硅突触电路领域被重新审视,提出了一个简洁的数学框架,能够系统地描述这一类对数域电路的动态。从最初为外部线性、时不变对数滤波器的模块化综合和分析而提出的 Bernoulli 细胞形式主义(BCF)出发,并通过识别这里提出的新类型的 Bernoulli 细胞(BC)算子,建立了一个广义形式主义(GBCF)。扩展的形式主义涵盖了 MOS 晶体管(MOST)和线性电容器的两种新的可能和实用组合。通过对三个著名的晶体管级对数域神经形态硅突触的示例进行教程式处理,给出了相应的数学关系并进行了讨论。所提出的数学工具将同一电路的过去分析方法统一在一个共同的理论框架下。通过一个引人注目的高阶比较电路分析示例,还展示了所提出的数学框架作为分析工具的速度优势,其中使用 GBCF 和另一种著名的对数域电路分析方法来确定高阶(第 4 阶)拓扑的输入输出传递函数。