Gowda Suraj, Orsborn Amy L, Carmena Jose M
Department of Electrical Engineering and Computer Sciences, University of California Berkeley, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1314-7. doi: 10.1109/EMBC.2012.6346179.
Brain-machine interfaces (BMIs) must be carefully designed for closed-loop control to ensure the best possible performance. The Kalman filter (KF) is a recursive linear BMI algorithm which has been shown to smooth cursor kinematics and improve control over non-recursive linear methods. However, recursive estimators are not without their drawbacks. Here we show that recursive decoders can decrease BMI controllability by coupling kinematic variables that the subject might expect to be unrelated. For instance, a 2D neural cursor where velocity is controlled using a KF can increase the difficulty of straight reaches by linking horizontal and vertical velocity estimates. These effects resemble force fields in arm control. Analysis of experimental data from one non-human primate controlling a position/velocity KF cursor in closed-loop shows that the presence of these force-field effects correlated with decreased performance. We designed a modified KF parameter estimation algorithm to eliminate these effects. Cursor controllability improved significantly when our modifications were used in a closed-loop BMI simulator. Thus, designing highly controllable BMIs requires parameter estimation techniques that carefully craft relationships between decoded variables.
脑机接口(BMI)必须经过精心设计以实现闭环控制,从而确保最佳性能。卡尔曼滤波器(KF)是一种递归线性BMI算法,已被证明能够平滑光标运动学并改善对非递归线性方法的控制。然而,递归估计器并非没有缺点。在此我们表明,递归解码器可能会通过耦合受试者可能认为不相关的运动学变量来降低BMI的可控性。例如,一个使用KF控制速度的二维神经光标可能会通过关联水平和垂直速度估计来增加直线到达的难度。这些效应类似于手臂控制中的力场。对一只非人类灵长类动物在闭环中控制位置/速度KF光标的实验数据进行分析表明,这些力场效应的存在与性能下降相关。我们设计了一种改进的KF参数估计算法来消除这些效应。当我们的改进措施应用于闭环BMI模拟器时,光标可控性得到了显著改善。因此,设计高度可控的BMI需要精心构建解码变量之间关系的参数估计技术。