Suppr超能文献

一种从反馈控制角度设计的脑机接口控制算法。

A brain machine interface control algorithm designed from a feedback control perspective.

作者信息

Gilja Vikash, Nuyujukian Paul, Chestek Cindy A, Cunningham John P, Yu Byron M, Fan Joline M, Ryu Stephen I, Shenoy Krishna V

机构信息

Dept. of Computer Science, Stanford University, Stanford, CA, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1318-22. doi: 10.1109/EMBC.2012.6346180.

Abstract

We present a novel brain machine interface (BMI) control algorithm, the recalibrated feedback intention-trained Kalman filter (ReFIT-KF). The design of ReFIT-KF is motivated from a feedback control perspective applied to existing BMI control algorithms. The result is two design innovations that alter the modeling assumptions made by these algorithms and the methods by which these algorithms are trained. In online neural control experiments recording from a 96-electrode array implanted in M1 of a macaque monkey, the ReFIT-KF control algorithm demonstrates large performance improvements over the current state of the art velocity Kalman filter, reducing target acquisition time by a factor of two, while maintaining a 500 ms hold period, thereby increasing the clinical viability of BMI systems.

摘要

我们提出了一种新型脑机接口(BMI)控制算法,即重新校准的反馈意图训练卡尔曼滤波器(ReFIT-KF)。ReFIT-KF的设计源自应用于现有BMI控制算法的反馈控制视角。结果产生了两项设计创新,改变了这些算法所做的建模假设以及这些算法的训练方法。在对一只猕猴M1区植入的96电极阵列进行记录的在线神经控制实验中,ReFIT-KF控制算法相较于当前最先进的速度卡尔曼滤波器展现出大幅性能提升,将目标获取时间缩短了一半,同时保持500毫秒的保持期,从而提高了BMI系统的临床可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验