Suppr超能文献

用于机器人辅助视网膜手术的力传感微型镊子。

Force sensing micro-forceps for robot assisted retinal surgery.

作者信息

Kuru Ismail, Gonenc Berk, Balicki Marcin, Handa James, Gehlbach Peter, Taylor Russell H, Iordachita Iulian

机构信息

Institute of Micro Technology and Medical Device Technology (MiMed), Technische Universität München, München, Germany.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1401-4. doi: 10.1109/EMBC.2012.6346201.

Abstract

Membrane peeling is a standard vitreoretinal procedure, where the surgeon delaminates a very thin membrane from retina surface using surgical picks and forceps. This requires extremely delicate manipulation of the retinal tissue. Applying excessive forces during the surgery can cause serious complications leading to vision loss. For successful membrane peeling, most of the applied forces need to be very small, well below the human tactile sensation threshold. In this paper, we present a robotic system that combines a force sensing forceps tool and a cooperatively-controlled surgical robot. This combination allows us to measure the forces directly at the tool tip and use this information for limiting the applied forces on the retina. This may prevent many iatrogenic injuries and allow safer maneuvers during vitreoretinal procedures. We show that our system can successfully eliminate hand-tremor and excessive forces in membrane peeling experiments on the inner shell membrane of a chicken embryo.

摘要

膜剥离是一种标准的玻璃体视网膜手术,外科医生使用手术镊和镊子从视网膜表面分离出一层非常薄的膜。这需要对视网膜组织进行极其精细的操作。手术过程中施加过大的力会导致严重并发症,进而导致视力丧失。为了成功进行膜剥离,大多数施加的力需要非常小,远低于人类触觉阈值。在本文中,我们提出了一种机器人系统,该系统结合了力传感镊子工具和协同控制的手术机器人。这种组合使我们能够直接在工具尖端测量力,并利用这些信息来限制施加在视网膜上的力。这可以预防许多医源性损伤,并在玻璃体视网膜手术中实现更安全的操作。我们表明,在鸡胚内壳膜的膜剥离实验中,我们的系统能够成功消除手部震颤和过大的力。

相似文献

1
Force sensing micro-forceps for robot assisted retinal surgery.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1401-4. doi: 10.1109/EMBC.2012.6346201.
2
Design of 3-DOF force sensing micro-forceps for robot assisted vitreoretinal surgery.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5686-9. doi: 10.1109/EMBC.2013.6610841.
3
Cooperative robot assistant for retinal microsurgery.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):543-50. doi: 10.1007/978-3-540-85990-1_65.
4
Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):303-10. doi: 10.1007/978-3-642-15711-0_38.
5
A force-sensing microsurgical instrument that detects forces below human tactile sensation.
Retina. 2013 Jan;33(1):200-6. doi: 10.1097/IAE.0b013e3182625d2b.
6
Evaluation of a Micro-Force Sensing Handheld Robot for Vitreoretinal Surgery.
Rep U S. 2012 Dec 20;2012:4125-4130. doi: 10.1109/IROS.2012.6385715.
7
Human eye phantom for developing computer and robot-assisted epiretinal membrane peeling.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6864-7. doi: 10.1109/EMBC.2014.6945205.
8
Motorized Force-Sensing Micro-Forceps with Tremor Cancelling and Controlled Micro-Vibrations for Easier Membrane Peeling.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2014 Aug;2014:244-251. doi: 10.1109/BIOROB.2014.6913784.
9
Swept source optical coherence tomography based smart handheld vitreoretinal microsurgical tool for tremor suppression.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1405-8. doi: 10.1109/EMBC.2012.6346202.
10
Toward robotically assisted membrane peeling with 3-DOF distal force sensing in retinal microsurgery.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6859-63. doi: 10.1109/EMBC.2014.6945204.

引用本文的文献

1
Robotic Assistance for Intraocular Microsurgery: Challenges and Perspectives.
Proc IEEE Inst Electr Electron Eng. 2022 Jul;110(7):893-908. doi: 10.1109/JPROC.2022.3169466. Epub 2022 May 9.
2
Mixed Dimensional ZnO/WSe Piezo-gated Transistor with Active Millinewton Force Sensing.
ACS Appl Mater Interfaces. 2022 Nov 2;14(43):49026-49034. doi: 10.1021/acsami.2c15730. Epub 2022 Oct 19.
3
Three-Axis Tension-Measuring Vitreoretinal Forceps Using Strain Sensor for Corneal Surgery.
Polymers (Basel). 2021 Dec 17;13(24):4433. doi: 10.3390/polym13244433.
4
Robotic Retinal Surgery Impacts on Scleral Forces: In Vivo Study.
Transl Vis Sci Technol. 2020 Sep 1;9(10):2. doi: 10.1167/tvst.9.10.2. eCollection 2020 Sep.
5
The Effect of Haptic Feedback on Efficiency and Safety During Preretinal Membrane Peeling Simulation.
Transl Vis Sci Technol. 2019 Jul 3;8(4):2. doi: 10.1167/tvst.8.4.2. eCollection 2019.
6
FBG-Based Transverse and Axial Force-Sensing Micro-Forceps for Retinal Microsurgery.
Proc IEEE Sens. 2016 Oct-Nov;2016. doi: 10.1109/ICSENS.2016.7808628. Epub 2017 Jan 9.
7
Robot-assisted vitreoretinal surgery: current perspectives.
Robot Surg. 2018;5:1-11. doi: 10.2147/RSRR.S122301. Epub 2018 Feb 23.
8
3-DOF Force-Sensing Micro-Forceps for Robot-Assisted Membrane Peeling: Intrinsic Actuation Force Modeling.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2016 Jun;2016:489-494. doi: 10.1109/BIOROB.2016.7523674. Epub 2016 Jul 28.
10
3-DOF Force-Sensing Motorized Micro-Forceps for Robot-Assisted Vitreoretinal Surgery.
IEEE Sens J. 2017 Jun 1;17(11):3526-3541. doi: 10.1109/JSEN.2017.2694965. Epub 2017 Apr 18.

本文引用的文献

1
New Steady-Hand Eye Robot with Micro-Force Sensing for Vitreoretinal Surgery.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2010 Sep 1;2010(26-29):814-819. doi: 10.1109/BIOROB.2010.5625991.
2
Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):303-10. doi: 10.1007/978-3-642-15711-0_38.
3
A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery.
Int J Comput Assist Radiol Surg. 2009 Jun;4(4):383-90. doi: 10.1007/s11548-009-0301-6. Epub 2009 Apr 15.
4
Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model.
Ophthalmology. 2009 Aug;116(8):1538-43, 1543.e1-2. doi: 10.1016/j.ophtha.2009.03.001. Epub 2009 Jul 9.
5
Applied force during vitreoretinal microsurgery with handheld instruments.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:2771-3. doi: 10.1109/IEMBS.2004.1403792.
6
The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation.
Retina. 2004 Jun;24(3):427-34. doi: 10.1097/00006982-200406000-00014.
7
Iatrogenic punctate chorioretinopathy after internal limiting membrane peeling.
Am J Ophthalmol. 2003 Feb;135(2):178-82. doi: 10.1016/s0002-9394(02)01925-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验