Suppr超能文献

用于玻璃体视网膜手术的微力传感手持式机器人的评估

Evaluation of a Micro-Force Sensing Handheld Robot for Vitreoretinal Surgery.

作者信息

Gonenc Berk, Balicki Marcin A, Handa James, Gehlbach Peter, Riviere Cameron N, Taylor Russell H, Iordachita Iulian

机构信息

ERC for Computer Integrated Surgery at Johns Hopkins University, Baltimore, MD 21218 USA.

出版信息

Rep U S. 2012 Dec 20;2012:4125-4130. doi: 10.1109/IROS.2012.6385715.

Abstract

Highly accurate positioning is fundamental to the performance of vitreoretinal microsurgery. Of vitreoretinal procedures, membrane peeling is among the most prone to complications since extremely delicate manipulation of retinal tissue is required. Associated tool-to-tissue interaction forces are usually below the threshold of human perception, and the surgical tools are moved very slowly, within the 0.1-0.5 mm/s range. During the procedure, unintentional tool motion and excessive forces can easily give rise to vision loss or irreversible damage to the retina. A successful surgery includes two key features: controlled tremor-free tool motion and control of applied force. In this study, we present the potential benefits of a micro-force sensing robot in vitreoretinal surgery. Our main contribution is implementing fiber Bragg grating based force sensing in an active tremor canceling handheld micromanipulator, known as Micron, to measure tool-to-tissue interaction forces in real time. Implemented auditory sensory substitution assists in reducing and limiting forces. In order to test the functionality and performance, the force sensing Micron was evaluated in peeling experiments with adhesive bandages and with the inner shell membrane from chicken eggs. Our findings show that the combination of active tremor canceling together with auditory sensory substitution is the most promising aid that keeps peeling forces below 7 mN with a significant reduction in 2-20 Hz oscillations.

摘要

高精度定位是玻璃体视网膜显微手术操作的基础。在玻璃体视网膜手术中,膜剥离是最容易引发并发症的操作之一,因为需要对视网膜组织进行极其精细的操作。相关的工具与组织间的相互作用力通常低于人类感知阈值,并且手术工具移动非常缓慢,速度在0.1 - 0.5毫米/秒范围内。在手术过程中,工具的无意移动和过大的力很容易导致视力丧失或对视网膜造成不可逆转的损伤。一次成功的手术包括两个关键特征:工具无震颤的受控移动以及所施加力的控制。在本研究中,我们展示了微力传感机器人在玻璃体视网膜手术中的潜在益处。我们的主要贡献是在一种名为Micron的主动震颤消除手持式显微操作器中实现基于光纤布拉格光栅的力传感,以实时测量工具与组织间的相互作用力。所实现的听觉感官替代有助于减少和限制作用力。为了测试其功能和性能,在使用粘性绷带以及鸡蛋内壳膜的剥离实验中对力传感Micron进行了评估。我们的研究结果表明,主动震颤消除与听觉感官替代相结合是最有前景的辅助手段,可将剥离力保持在7毫牛以下,并显著减少2 - 20赫兹的振荡。

相似文献

1
Evaluation of a Micro-Force Sensing Handheld Robot for Vitreoretinal Surgery.
Rep U S. 2012 Dec 20;2012:4125-4130. doi: 10.1109/IROS.2012.6385715.
2
Motorized Force-Sensing Micro-Forceps with Tremor Cancelling and Controlled Micro-Vibrations for Easier Membrane Peeling.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2014 Aug;2014:244-251. doi: 10.1109/BIOROB.2014.6913784.
3
Towards Robot-Assisted Vitreoretinal Surgery: Force-Sensing Micro-Forceps Integrated with a Handheld Micromanipulator.
IEEE Int Conf Robot Autom. 2014 May;2014:1399-1404. doi: 10.1109/ICRA.2014.6907035.
4
Force sensing micro-forceps for robot assisted retinal surgery.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1401-4. doi: 10.1109/EMBC.2012.6346201.
5
Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):303-10. doi: 10.1007/978-3-642-15711-0_38.
6
Safe Tissue Manipulation in Retinal Microsurgery via Motorized Instruments with Force Sensing.
Proc IEEE Sens. 2017 Oct-Nov;2017. doi: 10.1109/ICSENS.2017.8234070. Epub 2017 Dec 25.
7
New Steady-Hand Eye Robot with Micro-Force Sensing for Vitreoretinal Surgery.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2010 Sep 1;2010(26-29):814-819. doi: 10.1109/BIOROB.2010.5625991.
8
Design of 3-DOF force sensing micro-forceps for robot assisted vitreoretinal surgery.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5686-9. doi: 10.1109/EMBC.2013.6610841.
9
A Comparative Study for Robot Assisted Vitreoretinal Surgery: Micron vs. the Steady-Hand Robot.
IEEE Int Conf Robot Autom. 2013:4832-4837. doi: 10.1109/ICRA.2013.6631266.
10
Toward robotically assisted membrane peeling with 3-DOF distal force sensing in retinal microsurgery.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6859-63. doi: 10.1109/EMBC.2014.6945204.

引用本文的文献

2
Microsurgery Robots: Applications, Design, and Development.
Sensors (Basel). 2023 Oct 16;23(20):8503. doi: 10.3390/s23208503.
3
Overcoming the impact of physiologic tremors in ophthalmology.
Graefes Arch Clin Exp Ophthalmol. 2022 Dec;260(12):3723-3736. doi: 10.1007/s00417-022-05718-2. Epub 2022 Jul 5.
4
Real-time vessel segmentation and reconstruction for virtual fixtures for an active handheld microneurosurgical instrument.
Int J Comput Assist Radiol Surg. 2022 Jun;17(6):1069-1077. doi: 10.1007/s11548-022-02584-5. Epub 2022 Mar 16.
5
The Surgeon's Role in Inducing and Controlling Motion Errors During Intraocular Membrane Peeling Procedures.
Turk J Ophthalmol. 2021 Oct 26;51(5):288-293. doi: 10.4274/tjo.galenos.2020.40035.
6
Tool-tissue forces in surgery: A systematic review.
Ann Med Surg (Lond). 2021 Mar 31;65:102268. doi: 10.1016/j.amsu.2021.102268. eCollection 2021 May.
7
A Review of Robotic and OCT-Aided Systems for Vitreoretinal Surgery.
Adv Ther. 2021 May;38(5):2114-2129. doi: 10.1007/s12325-021-01692-z. Epub 2021 Apr 3.
8
The Effect of Haptic Feedback on Efficiency and Safety During Preretinal Membrane Peeling Simulation.
Transl Vis Sci Technol. 2019 Jul 3;8(4):2. doi: 10.1167/tvst.8.4.2. eCollection 2019.
9
User Behavior Evaluation in Robot-Assisted Retinal Surgery.
ROMAN. 2018 Aug;2018:174-179. doi: 10.1109/ROMAN.2018.8525638. Epub 2018 Nov 8.
10
Unintentional Movements During the Use of Vitreoretinal Forceps.
Transl Vis Sci Technol. 2018 Dec 21;7(6):28. doi: 10.1167/tvst.7.6.28. eCollection 2018 Nov.

本文引用的文献

1
Micron: an Actively Stabilized Handheld Tool for Microsurgery.
IEEE Trans Robot. 2012 Feb 1;28(1):195-212. doi: 10.1109/TRO.2011.2169634. Epub 2011 Nov 18.
2
New Steady-Hand Eye Robot with Micro-Force Sensing for Vitreoretinal Surgery.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2010 Sep 1;2010(26-29):814-819. doi: 10.1109/BIOROB.2010.5625991.
3
Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):303-10. doi: 10.1007/978-3-642-15711-0_38.
4
A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery.
Int J Comput Assist Radiol Surg. 2009 Jun;4(4):383-90. doi: 10.1007/s11548-009-0301-6. Epub 2009 Apr 15.
5
Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model.
Ophthalmology. 2009 Aug;116(8):1538-43, 1543.e1-2. doi: 10.1016/j.ophtha.2009.03.001. Epub 2009 Jul 9.
7
Applied force during vitreoretinal microsurgery with handheld instruments.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:2771-3. doi: 10.1109/IEMBS.2004.1403792.
8
Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.
J Thorac Cardiovasc Surg. 2005 Jan;129(1):151-8. doi: 10.1016/j.jtcvs.2004.05.029.
9
Retinal microvascular surgery: a feasibility study.
Invest Ophthalmol Vis Sci. 2004 Jun;45(6):1963-8. doi: 10.1167/iovs.03-0874.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验