Gonenc Berk, Balicki Marcin A, Handa James, Gehlbach Peter, Riviere Cameron N, Taylor Russell H, Iordachita Iulian
ERC for Computer Integrated Surgery at Johns Hopkins University, Baltimore, MD 21218 USA.
Rep U S. 2012 Dec 20;2012:4125-4130. doi: 10.1109/IROS.2012.6385715.
Highly accurate positioning is fundamental to the performance of vitreoretinal microsurgery. Of vitreoretinal procedures, membrane peeling is among the most prone to complications since extremely delicate manipulation of retinal tissue is required. Associated tool-to-tissue interaction forces are usually below the threshold of human perception, and the surgical tools are moved very slowly, within the 0.1-0.5 mm/s range. During the procedure, unintentional tool motion and excessive forces can easily give rise to vision loss or irreversible damage to the retina. A successful surgery includes two key features: controlled tremor-free tool motion and control of applied force. In this study, we present the potential benefits of a micro-force sensing robot in vitreoretinal surgery. Our main contribution is implementing fiber Bragg grating based force sensing in an active tremor canceling handheld micromanipulator, known as Micron, to measure tool-to-tissue interaction forces in real time. Implemented auditory sensory substitution assists in reducing and limiting forces. In order to test the functionality and performance, the force sensing Micron was evaluated in peeling experiments with adhesive bandages and with the inner shell membrane from chicken eggs. Our findings show that the combination of active tremor canceling together with auditory sensory substitution is the most promising aid that keeps peeling forces below 7 mN with a significant reduction in 2-20 Hz oscillations.
高精度定位是玻璃体视网膜显微手术操作的基础。在玻璃体视网膜手术中,膜剥离是最容易引发并发症的操作之一,因为需要对视网膜组织进行极其精细的操作。相关的工具与组织间的相互作用力通常低于人类感知阈值,并且手术工具移动非常缓慢,速度在0.1 - 0.5毫米/秒范围内。在手术过程中,工具的无意移动和过大的力很容易导致视力丧失或对视网膜造成不可逆转的损伤。一次成功的手术包括两个关键特征:工具无震颤的受控移动以及所施加力的控制。在本研究中,我们展示了微力传感机器人在玻璃体视网膜手术中的潜在益处。我们的主要贡献是在一种名为Micron的主动震颤消除手持式显微操作器中实现基于光纤布拉格光栅的力传感,以实时测量工具与组织间的相互作用力。所实现的听觉感官替代有助于减少和限制作用力。为了测试其功能和性能,在使用粘性绷带以及鸡蛋内壳膜的剥离实验中对力传感Micron进行了评估。我们的研究结果表明,主动震颤消除与听觉感官替代相结合是最有前景的辅助手段,可将剥离力保持在7毫牛以下,并显著减少2 - 20赫兹的振荡。