Suppr超能文献

使用主动形状模型从胸部X光图像中进行气道的交互式分割。

Interactive segmentation of airways from chest X-ray images using active shape models.

作者信息

Tezoo Teshwaree, Douglas Tania S

机构信息

MRC/UCT Medical Imaging Research Unit, University of Cape Town, Observatory 7925, South Africa.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1498-501. doi: 10.1109/EMBC.2012.6346225.

Abstract

Classification of airway shapes in chest X-ray images may be useful in computer-aided detection of lymphadenopathy associated with pediatric tuberculosis. This paper presents an interactive approach for airway segmentation from chest X-ray images that may be used in an airway shape classification algorithm. A local normalization filter is applied as a preprocessing step to enhance the visibility of the airways. Segmentation is then performed with the aid of active shape models (ASMs), which are warped to a set of manually defined control points on the image to be segmented, using an affine transformation. Two shape models are built, one of which consists of points on the airway edges only and the other consists of points on the airway edges as well as points on the ribs. The ASMs are built from a set of manually segmented images. The Hausdorff distance is used to compute the accuracy of the segmentations with reference to a manual segmentation.

摘要

胸部X光图像中气道形状的分类可能有助于计算机辅助检测与小儿结核病相关的淋巴结病。本文提出了一种从胸部X光图像中进行气道分割的交互式方法,该方法可用于气道形状分类算法。作为预处理步骤,应用局部归一化滤波器来增强气道的可见性。然后借助主动形状模型(ASM)进行分割,通过仿射变换将其扭曲到要分割图像上的一组手动定义的控制点。构建了两个形状模型,其中一个仅由气道边缘上的点组成,另一个由气道边缘上的点以及肋骨上的点组成。ASM是从一组手动分割的图像构建的。使用豪斯多夫距离参照手动分割来计算分割的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验