Suppr超能文献

基于联合形状和外观稀疏学习的肺部区域分割。

Hierarchical lung field segmentation with joint shape and appearance sparse learning.

出版信息

IEEE Trans Med Imaging. 2014 Sep;33(9):1761-80. doi: 10.1109/TMI.2014.2305691.

Abstract

Lung field segmentation in the posterior-anterior (PA) chest radiograph is important for pulmonary disease diagnosis and hemodialysis treatment. Due to high shape variation and boundary ambiguity, accurate lung field segmentation from chest radiograph is still a challenging task. To tackle these challenges, we propose a joint shape and appearance sparse learning method for robust and accurate lung field segmentation. The main contributions of this paper are: 1) a robust shape initialization method is designed to achieve an initial shape that is close to the lung boundary under segmentation; 2) a set of local sparse shape composition models are built based on local lung shape segments to overcome the high shape variations; 3) a set of local appearance models are similarly adopted by using sparse representation to capture the appearance characteristics in local lung boundary segments, thus effectively dealing with the lung boundary ambiguity; 4) a hierarchical deformable segmentation framework is proposed to integrate the scale-dependent shape and appearance information together for robust and accurate segmentation. Our method is evaluated on 247 PA chest radiographs in a public dataset. The experimental results show that the proposed local shape and appearance models outperform the conventional shape and appearance models. Compared with most of the state-of-the-art lung field segmentation methods under comparison, our method also shows a higher accuracy, which is comparable to the inter-observer annotation variation.

摘要

在后前(PA)胸部 X 光片中进行肺野分割对于肺病诊断和血液透析治疗非常重要。由于形状变化大且边界不明确,因此从胸部 X 光片中准确分割肺野仍然是一项具有挑战性的任务。为了解决这些挑战,我们提出了一种联合形状和外观稀疏学习方法,用于进行稳健和准确的肺野分割。本文的主要贡献有:1)设计了一种稳健的形状初始化方法,以实现分割下接近肺边界的初始形状;2)基于局部肺形状段构建了一组局部稀疏形状组合模型,以克服高形状变化;3)同样采用一组局部外观模型,通过稀疏表示来捕获局部肺边界段中的外观特征,从而有效地处理肺边界不明确问题;4)提出了一种分层可变形分割框架,将与尺度相关的形状和外观信息集成在一起,以进行稳健和准确的分割。我们的方法在一个公共数据集的 247 张 PA 胸部 X 光片中进行了评估。实验结果表明,所提出的局部形状和外观模型优于传统的形状和外观模型。与比较中的大多数最先进的肺野分割方法相比,我们的方法也表现出更高的准确性,与观察者间注释变化相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验