Suppr超能文献

双相情感障碍患者情绪状态特征的语音分析

Speech analysis for mood state characterization in bipolar patients.

作者信息

Vanello Nicola, Guidi Andrea, Gentili Claudio, Werner Sandra, Bertschy Gilles, Valenza Gaetano, Lanata Antonio, Scilingo Enzo Pasquale

机构信息

Department of Information Engineering, University of Pisa, Pisa, Italy.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2104-7. doi: 10.1109/EMBC.2012.6346375.

Abstract

Bipolar disorders are characterized by an unpredictable behavior, resulting in depressive, hypomanic or manic episodes alternating with euthymic states. A multi-parametric approach can be followed to estimate mood states by integrating information coming from different physiological signals and from the analysis of voice. In this work we propose an algorithm to estimate speech features from running speech with the aim of characterizing the mood state in bipolar patients. This algorithm is based on an automatic segmentation of speech signals to detect voiced segments, and on a spectral matching approach to estimate pitch and pitch changes. In particular average pitch, jitter and pitch standard deviation within each voiced segment, are estimated. The performances of the algorithm are evaluated on a speech database, which includes an electroglottographic signal. A preliminary analysis on subjects affected by bipolar disorders is performed and results are discussed.

摘要

双相情感障碍的特征是行为不可预测,导致抑郁、轻躁狂或躁狂发作与心境正常状态交替出现。可以采用多参数方法,通过整合来自不同生理信号和语音分析的信息来估计情绪状态。在这项工作中,我们提出了一种算法,用于从连续语音中估计语音特征,目的是表征双相情感障碍患者的情绪状态。该算法基于语音信号的自动分割以检测浊音段,并基于频谱匹配方法来估计音高和音高变化。具体而言,估计每个浊音段内的平均音高、抖动和音高标准差。该算法的性能在一个包含电声门图信号的语音数据库上进行评估。对双相情感障碍患者进行了初步分析并讨论了结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验