Suppr超能文献

双相情感障碍患者情绪状态特征的语音分析

Speech analysis for mood state characterization in bipolar patients.

作者信息

Vanello Nicola, Guidi Andrea, Gentili Claudio, Werner Sandra, Bertschy Gilles, Valenza Gaetano, Lanata Antonio, Scilingo Enzo Pasquale

机构信息

Department of Information Engineering, University of Pisa, Pisa, Italy.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2104-7. doi: 10.1109/EMBC.2012.6346375.

Abstract

Bipolar disorders are characterized by an unpredictable behavior, resulting in depressive, hypomanic or manic episodes alternating with euthymic states. A multi-parametric approach can be followed to estimate mood states by integrating information coming from different physiological signals and from the analysis of voice. In this work we propose an algorithm to estimate speech features from running speech with the aim of characterizing the mood state in bipolar patients. This algorithm is based on an automatic segmentation of speech signals to detect voiced segments, and on a spectral matching approach to estimate pitch and pitch changes. In particular average pitch, jitter and pitch standard deviation within each voiced segment, are estimated. The performances of the algorithm are evaluated on a speech database, which includes an electroglottographic signal. A preliminary analysis on subjects affected by bipolar disorders is performed and results are discussed.

摘要

双相情感障碍的特征是行为不可预测,导致抑郁、轻躁狂或躁狂发作与心境正常状态交替出现。可以采用多参数方法,通过整合来自不同生理信号和语音分析的信息来估计情绪状态。在这项工作中,我们提出了一种算法,用于从连续语音中估计语音特征,目的是表征双相情感障碍患者的情绪状态。该算法基于语音信号的自动分割以检测浊音段,并基于频谱匹配方法来估计音高和音高变化。具体而言,估计每个浊音段内的平均音高、抖动和音高标准差。该算法的性能在一个包含电声门图信号的语音数据库上进行评估。对双相情感障碍患者进行了初步分析并讨论了结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验