Sui Jing, He Hao, Liu Jingyu, Yu Qingbao, Adali Tulay, Pearlson Godfrey D, Calhoun Vince D
Mind Research Network, Albuquerque, NM 87106, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2692-5. doi: 10.1109/EMBC.2012.6346519.
Multi-modal fusion is an effective approach in biomedical imaging which combines multiple data types in a joint analysis and overcomes the problem that each modality provides a limited view of the brain. In this paper, we propose an exploratory fusion model, we term "mCCA+jICA", by combining two multivariate approaches: multi-set canonical correlation analysis (mCCA) and joint independent component analysis (jICA). This model can freely combine multiple, disparate data sets and explore their joint information in an accurate and effective manner, so that high decomposition accuracy and valid modal links can be achieved simultaneously. We compared mCCA+jICA with its alternatives in simulation and applied it to real fMRI-DTI-methylation data fusion, to identify brain abnormalities in schizophrenia. The results replicate previous reports and add to our understanding of the neural correlates of schizophrenia, and suggest more generally a promising approach to identify potential brain illness biomarkers.
多模态融合是生物医学成像中的一种有效方法,它在联合分析中结合多种数据类型,克服了每种模态对大脑提供有限视角的问题。在本文中,我们通过结合多集典型相关分析(mCCA)和联合独立成分分析(jICA)这两种多变量方法,提出了一种探索性融合模型,我们将其称为“mCCA+jICA”。该模型可以自由组合多个不同的数据集,并以准确有效的方式探索它们的联合信息,从而同时实现高分解精度和有效的模态链接。我们在模拟中比较了mCCA+jICA与其替代方法,并将其应用于实际的功能磁共振成像-扩散张量成像-甲基化数据融合,以识别精神分裂症中的大脑异常。结果重复了先前的报告,并加深了我们对精神分裂症神经相关性的理解,并且更普遍地表明了一种识别潜在脑疾病生物标志物的有前景的方法。