Suppr超能文献

多模态融合与参考:在精神分裂症中寻找工作记忆缺陷的联合神经标志物。

Multimodal Fusion With Reference: Searching for Joint Neuromarkers of Working Memory Deficits in Schizophrenia.

出版信息

IEEE Trans Med Imaging. 2018 Jan;37(1):93-105. doi: 10.1109/TMI.2017.2725306. Epub 2017 Jul 11.

Abstract

By exploiting cross-information among multiple imaging data, multimodal fusion has often been used to better understand brain diseases. However, most current fusion approaches are blind, without adopting any prior information. There is increasing interest to uncover the neurocognitive mapping of specific clinical measurements on enriched brain imaging data; hence, a supervised, goal-directed model that employs prior information as a reference to guide multimodal data fusion is much needed and becomes a natural option. Here, we proposed a fusion with reference model called "multi-site canonical correlation analysis with reference + joint-independent component analysis" (MCCAR+jICA), which can precisely identify co-varying multimodal imaging patterns closely related to the reference, such as cognitive scores. In a three-way fusion simulation, the proposed method was compared with its alternatives on multiple facets; MCCAR+jICA outperforms others with higher estimation precision and high accuracy on identifying a target component with the right correspondence. In human imaging data, working memory performance was utilized as a reference to investigate the co-varying working memory-associated brain patterns among three modalities and how they are impaired in schizophrenia. Two independent cohorts (294 and 83 subjects respectively) were used. Similar brain maps were identified between the two cohorts along with substantial overlaps in the central executive network in fMRI, salience network in sMRI, and major white matter tracts in dMRI. These regions have been linked with working memory deficits in schizophrenia in multiple reports and MCCAR+jICA further verified them in a repeatable, joint manner, demonstrating the ability of the proposed method to identify potential neuromarkers for mental disorders.

摘要

通过利用多种成像数据之间的交叉信息,多模态融合经常被用于更好地理解脑部疾病。然而,大多数现有的融合方法都是盲目的,没有采用任何先验信息。人们越来越有兴趣在丰富的脑成像数据中揭示特定临床测量值的神经认知映射;因此,需要一种有监督的、有针对性的模型,该模型将先验信息作为参考来指导多模态数据融合,这是一种自然的选择。在这里,我们提出了一种名为“带参考的多站点典型相关分析+联合独立成分分析”(MCCAR+jICA)的融合参考模型,该模型可以精确识别与参考密切相关的共变多模态成像模式,如认知评分。在三路融合模拟中,该方法在多个方面与其他方法进行了比较;MCCAR+jICA 具有更高的估计精度和更高的准确性,能够正确识别目标成分。在人类成像数据中,工作记忆表现被用作参考,以研究三种模态之间与工作记忆相关的共变脑模式,以及它们在精神分裂症中是如何受损的。使用了两个独立的队列(分别为 294 名和 83 名受试者)。两个队列之间识别出了相似的脑图,并且在 fMRI 中的中央执行网络、sMRI 中的突显网络和 dMRI 中的主要白质束中存在大量重叠。这些区域在多个报告中与精神分裂症的工作记忆缺陷有关,MCCAR+jICA 以可重复的、联合的方式进一步验证了这些区域,证明了该方法识别精神障碍潜在神经标志物的能力。

相似文献

1
Multimodal Fusion With Reference: Searching for Joint Neuromarkers of Working Memory Deficits in Schizophrenia.
IEEE Trans Med Imaging. 2018 Jan;37(1):93-105. doi: 10.1109/TMI.2017.2725306. Epub 2017 Jul 11.
2
Supervised multimodal fusion and its application in searching joint neuromarkers of working memory deficits in schizophrenia.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4021-4026. doi: 10.1109/EMBC.2016.7591609.
3
Three-way (N-way) fusion of brain imaging data based on mCCA+jICA and its application to discriminating schizophrenia.
Neuroimage. 2013 Feb 1;66:119-32. doi: 10.1016/j.neuroimage.2012.10.051. Epub 2012 Oct 26.
4
Four-way multimodal fusion of 7 T imaging data using an mCCA+jICA model in first-episode schizophrenia.
Hum Brain Mapp. 2018 Apr;39(4):1475-1488. doi: 10.1002/hbm.23906. Epub 2018 Jan 9.
6
Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion.
Nat Commun. 2018 Aug 2;9(1):3028. doi: 10.1038/s41467-018-05432-w.
8
Combining multi-modality data for searching biomarkers in schizophrenia.
PLoS One. 2018 Feb 1;13(2):e0191202. doi: 10.1371/journal.pone.0191202. eCollection 2018.
9
Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model.
Neuroimage. 2011 Aug 1;57(3):839-55. doi: 10.1016/j.neuroimage.2011.05.055. Epub 2011 May 27.
10
Using joint ICA to link function and structure using MEG and DTI in schizophrenia.
Neuroimage. 2013 Dec;83:418-30. doi: 10.1016/j.neuroimage.2013.06.038. Epub 2013 Jun 15.

引用本文的文献

2
AI-powered integration of multimodal imaging in precision medicine for neuropsychiatric disorders.
Cell Rep Med. 2025 May 20;6(5):102132. doi: 10.1016/j.xcrm.2025.102132.
7
8
Brain identification of IBS patients based on GBDT and multiple imaging techniques.
Phys Eng Sci Med. 2024 Jun;47(2):651-662. doi: 10.1007/s13246-024-01394-0. Epub 2024 Feb 28.
10
Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi-informed insights into schizophrenia.
Hum Brain Mapp. 2023 Dec 1;44(17):5828-5845. doi: 10.1002/hbm.26479. Epub 2023 Sep 27.

本文引用的文献

1
Blind Source Separation for Unimodal and Multimodal Brain Networks: A Unifying Framework for Subspace Modeling.
IEEE J Sel Top Signal Process. 2016 Oct;10(7):1134-1149. doi: 10.1109/JSTSP.2016.2594945. Epub 2016 Jul 27.
2
Multimodal fusion of brain imaging data: A key to finding the missing link(s) in complex mental illness.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2016 May;1(3):230-244. doi: 10.1016/j.bpsc.2015.12.005.
3
Predicting individualized clinical measures by a generalized prediction framework and multimodal fusion of MRI data.
Neuroimage. 2017 Jan 15;145(Pt B):218-229. doi: 10.1016/j.neuroimage.2016.05.026. Epub 2016 May 10.
5
Neuropsychological profile in adult schizophrenia measured with the CMINDS.
Psychiatry Res. 2015 Dec 30;230(3):826-34. doi: 10.1016/j.psychres.2015.10.028. Epub 2015 Oct 26.
7
In search of multimodal neuroimaging biomarkers of cognitive deficits in schizophrenia.
Biol Psychiatry. 2015 Dec 1;78(11):794-804. doi: 10.1016/j.biopsych.2015.02.017. Epub 2015 Feb 24.
8
Prefrontal cortex and the dysconnectivity hypothesis of schizophrenia.
Neurosci Bull. 2015 Apr;31(2):207-19. doi: 10.1007/s12264-014-1502-8. Epub 2015 Mar 11.
9
Patterns of Gray Matter Abnormalities in Schizophrenia Based on an International Mega-analysis.
Schizophr Bull. 2015 Sep;41(5):1133-42. doi: 10.1093/schbul/sbu177. Epub 2014 Dec 28.
10
Memory deficits in schizophrenia: a selective review of functional magnetic resonance imaging (FMRI) studies.
Behav Sci (Basel). 2013 Jun 27;3(3):330-347. doi: 10.3390/bs3030330. eCollection 2013 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验