Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
School of Automation, Harbin University of Science and Technology, Harbin, China.
Schizophr Bull. 2019 Mar 7;45(2):436-449. doi: 10.1093/schbul/sby045.
Multimodal fusion has been regarded as a promising tool to discover covarying patterns of multiple imaging types impaired in brain diseases, such as schizophrenia (SZ). In this article, we aim to investigate the covarying abnormalities underlying SZ in a large Chinese Han population (307 SZs, 298 healthy controls [HCs]). Four types of magnetic resonance imaging (MRI) features, including regional homogeneity (ReHo) from resting-state functional MRI, gray matter volume (GM) from structural MRI, fractional anisotropy (FA) from diffusion MRI, and functional network connectivity (FNC) resulted from group independent component analysis, were jointly analyzed by a data-driven multivariate fusion method. Results suggest that a widely distributed network disruption appears in SZ patients, with synchronous changes in both functional and structural regions, especially the basal ganglia network, salience network (SAN), and the frontoparietal network. Such a multimodal coalteration was also replicated in another independent Chinese sample (40 SZs, 66 HCs). Our results on auditory verbal hallucination (AVH) also provide evidence for the hypothesis that prefrontal hypoactivation and temporal hyperactivation in SZ may lead to failure of executive control and inhibition, which is relevant to AVH. In addition, impaired working memory performance was found associated with GM reduction and FA decrease in SZ in prefrontal and superior temporal area, in both discovery and replication datasets. In summary, by leveraging multiple imaging and clinical information into one framework to observe brain in multiple views, we can integrate multiple inferences about SZ from large-scale population and offer unique perspectives regarding the missing links between the brain function and structure that may not be achieved by separate unimodal analyses.
多模态融合已被视为一种很有前途的工具,可以发现多种成像类型在脑疾病(如精神分裂症[SZ])中的共变模式。在本文中,我们旨在调查一个大型汉族人群(307 例 SZ,298 例健康对照[HC])中 SZ 的潜在共变异常。四种类型的磁共振成像(MRI)特征,包括静息态功能 MRI 的局部一致性(ReHo)、结构 MRI 的灰质体积(GM)、弥散 MRI 的各向异性分数(FA)和组独立成分分析产生的功能网络连接(FNC),通过数据驱动的多元融合方法进行联合分析。结果表明,SZ 患者存在广泛分布的网络破坏,功能和结构区域同步变化,特别是基底节网络、突显网络(SAN)和额顶网络。这种多模态协同作用在另一个独立的中国样本(40 例 SZ,66 例 HCs)中也得到了复制。我们关于听觉言语幻觉(AVH)的结果也为以下假说提供了证据,即 SZ 中的前额叶低激活和颞叶高激活可能导致执行控制和抑制失败,这与 AVH 有关。此外,在发现和复制数据集的前额叶和颞上区,发现 SZ 的工作记忆表现受损与 GM 减少和 FA 下降有关。总之,通过将多种成像和临床信息纳入一个框架,从多个角度观察大脑,我们可以整合来自大规模人群的关于 SZ 的多种推断,并提供关于大脑功能和结构之间缺失环节的独特视角,这些可能无法通过单独的单模态分析来实现。