使用高密度电极阵列减少因电极移位导致的基于模式识别的肌电控制的分类精度下降。
Reducing classification accuracy degradation of pattern recognition based myoelectric control caused by electrode shift using a high density electrode array.
作者信息
Boschmann Alexander, Platzner Marco
机构信息
Department of Computer Science, University of Paderborn, 33098 Paderborn, Germany.
出版信息
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4324-7. doi: 10.1109/EMBC.2012.6346923.
The robustness and usability of pattern recognition based myoelectric control systems degrade significantly if the sensors are displaced during usage. This effect inevitably occurs during donning, doffing or using an upper-limb prosthesis over a longer period of time. Electrode shift has been previously studied but remains an unsolved problem. In this study we investigate if increasing the number of electrode channels and recording locations can improve the degraded classification accuracy caused by electrode shift. In our experiment we use a 96 channel high density electrode array to distinguish 11 different hand and wrist movements. Our results show that for electrode shifts up to 1 cm an array of about 32 sensors in combination with state-of-the-art pattern recognition algorithms is sufficient to compensate the electrode displacement effect.
如果在使用过程中传感器发生位移,基于模式识别的肌电控制系统的稳健性和可用性会显著下降。在穿戴、脱卸或长时间使用上肢假肢期间,这种影响不可避免地会出现。电极移位此前已被研究,但仍是一个未解决的问题。在本研究中,我们探究增加电极通道和记录位置的数量是否能够改善由电极移位导致的分类准确率下降的情况。在我们的实验中,我们使用一个96通道的高密度电极阵列来区分11种不同的手部和腕部动作。我们的结果表明,对于电极移位达1厘米的情况,约32个传感器的阵列与最先进的模式识别算法相结合足以补偿电极位移效应。