Suppr超能文献

使用非接触式称重传感器和AdaBoost决策树算法进行家庭睡眠呼吸暂停严重程度分类

In-Home Sleep Apnea Severity Classification using Contact-free Load Cells and an AdaBoosted Decision Tree Algorithm.

作者信息

Mosquera-Lopez Clara, Leitschuh Joseph, Condon John, Hagen Chad C, Hanks Cody, Jacobs Peter G

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:6044-6047. doi: 10.1109/EMBC.2018.8513602.

Abstract

We present a method for automated diagnosis and classification of severity of sleep apnea using an array of non-contact pressure-sensitive sensors placed underneath a mattress as an alternative to conventional obtrusive sensors. Our algorithm comprises two stages: i) A decision tree classifier that identifies patients with sleep apnea, and ii) a subsequent linear regression model that estimates the Apnea-Hypopnea Index (AHI), which is used to determine the severity of sleep disordered breathing. We tested our algorithm on a cohort of 14 patients who underwent overnight home sleep apnea test. The machine learning algorithm was trained and performance was evaluated using leave-one-patient-out cross-validation. The accuracy of the proposed approach in detecting sleep apnea is 86.96%, with sensitivity and specificity of 81.82% and 91.67%, respectively. Moreover, classification of severity of the sleep disorder was correctly assigned in 11 out of 14 cases, and the mean absolute error in the AHI estimation was calculated to be 3.83 events/hr.

摘要

我们提出了一种使用放置在床垫下方的一系列非接触式压敏传感器自动诊断睡眠呼吸暂停并对其严重程度进行分类的方法,以此替代传统的侵入式传感器。我们的算法包括两个阶段:i)一个决策树分类器,用于识别患有睡眠呼吸暂停的患者;ii)一个后续的线性回归模型,用于估计呼吸暂停低通气指数(AHI),该指数用于确定睡眠呼吸障碍的严重程度。我们在一组接受过夜家庭睡眠呼吸暂停测试的14名患者中测试了我们的算法。使用留一法交叉验证对机器学习算法进行训练并评估其性能。所提出的方法检测睡眠呼吸暂停的准确率为86.96%,敏感性和特异性分别为81.82%和91.67%。此外,在14例病例中有11例正确分配了睡眠障碍严重程度的分类,AHI估计的平均绝对误差计算为3.83次/小时。

相似文献

1
In-Home Sleep Apnea Severity Classification using Contact-free Load Cells and an AdaBoosted Decision Tree Algorithm.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:6044-6047. doi: 10.1109/EMBC.2018.8513602.
2
Automated prediction of the apnea-hypopnea index using a wireless patch sensor.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1897-900. doi: 10.1109/EMBC.2014.6943981.
3
Non-contact Apnea-Hypopnea Index Estimation using Near Infrared Video.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:792-795. doi: 10.1109/EMBC.2019.8857711.
4
New Rule-Based Algorithm for Real-Time Detecting Sleep Apnea and Hypopnea Events Using a Nasal Pressure Signal.
J Med Syst. 2016 Dec;40(12):282. doi: 10.1007/s10916-016-0637-8. Epub 2016 Oct 27.
7
Successful screening of sleep-disordered breathing using a pacemaker-based algorithm in Japan.
J Cardiol. 2019 May;73(5):394-400. doi: 10.1016/j.jjcc.2018.10.007. Epub 2019 Jan 7.
8
Can we discriminate between apnea and hypopnea using audio signals?
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3211-3214. doi: 10.1109/EMBC.2016.7591412.
10
A New Approach for Detecting Sleep Apnea Using a Contactless Bed Sensor: Comparison Study.
J Med Internet Res. 2020 Sep 18;22(9):e18297. doi: 10.2196/18297.

本文引用的文献

1
Apnea-Hypopnea Index Prediction Using Electrocardiogram Acquired During the Sleep-Onset Period.
IEEE Trans Biomed Eng. 2017 Feb;64(2):295-301. doi: 10.1109/TBME.2016.2554138. Epub 2016 Apr 14.
2
A time-frequency respiration tracking system using non-contact bed sensors with harmonic artifact rejection.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:8111-4. doi: 10.1109/EMBC.2015.7320276.
3
Obstructive sleep apnoea syndrome and its management.
Ther Adv Chronic Dis. 2015 Sep;6(5):273-85. doi: 10.1177/2040622315590318.
4
Utility of AdaBoost to Detect Sleep Apnea-Hypopnea Syndrome From Single-Channel Airflow.
IEEE Trans Biomed Eng. 2016 Mar;63(3):636-46. doi: 10.1109/TBME.2015.2467188. Epub 2015 Aug 11.
5
Misclassification of OSA severity with automated scoring of home sleep recordings.
Chest. 2015 Mar;147(3):719-727. doi: 10.1378/chest.14-0929.
6
A review of current sleep screening applications for smartphones.
Physiol Meas. 2013 Jul;34(7):R29-46. doi: 10.1088/0967-3334/34/7/R29. Epub 2013 Jun 17.
7
Increased prevalence of sleep-disordered breathing in adults.
Am J Epidemiol. 2013 May 1;177(9):1006-14. doi: 10.1093/aje/kws342. Epub 2013 Apr 14.
8
Unobtrusive classification of sleep and wakefulness using load cells under the bed.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5254-7. doi: 10.1109/EMBC.2012.6347179.
9
Classification of breathing events using load cells under the bed.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3921-4. doi: 10.1109/IEMBS.2009.5333548.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验