Suppr超能文献

使用 SVM 分类器和主动轮廓建模进行肺结节分割和识别:一个完整的智能系统。

Lung nodule segmentation and recognition using SVM classifier and active contour modeling: a complete intelligent system.

机构信息

Department of Computer Science and Engineering, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.

出版信息

Comput Biol Med. 2013 May;43(4):287-300. doi: 10.1016/j.compbiomed.2012.12.004. Epub 2013 Jan 29.

Abstract

In this paper, a novel method for lung nodule detection, segmentation and recognition using computed tomography (CT) images is presented. Our contribution consists of several steps. First, the lung area is segmented by active contour modeling followed by some masking techniques to transfer non-isolated nodules into isolated ones. Then, nodules are detected by the support vector machine (SVM) classifier using efficient 2D stochastic and 3D anatomical features. Contours of detected nodules are then extracted by active contour modeling. In this step all solid and cavitary nodules are accurately segmented. Finally, lung tissues are classified into four classes: namely lung wall, parenchyma, bronchioles and nodules. This classification helps us to distinguish a nodule connected to the lung wall and/or bronchioles (attached nodule) from the one covered by parenchyma (solitary nodule). At the end, performance of our proposed method is examined and compared with other efficient methods through experiments using clinical CT images and two groups of public datasets from Lung Image Database Consortium (LIDC) and ANODE09. Solid, non-solid and cavitary nodules are detected with an overall detection rate of 89%; the number of false positive is 7.3/scan and the location of all detected nodules are recognized correctly.

摘要

本文提出了一种利用计算机断层扫描(CT)图像进行肺结节检测、分割和识别的新方法。我们的贡献包括几个步骤。首先,通过主动轮廓模型对肺区域进行分割,然后使用一些掩模技术将非孤立结节转化为孤立结节。然后,使用有效的 2D 随机和 3D 解剖特征,通过支持向量机(SVM)分类器检测结节。然后通过主动轮廓模型提取检测到的结节的轮廓。在这一步骤中,所有实性和空洞性结节都可以被准确地分割。最后,将肺组织分为四类:肺壁、实质、细支气管和结节。这种分类有助于我们区分与肺壁和/或细支气管相连的结节(附壁结节)和被实质覆盖的结节(孤立结节)。最后,通过使用临床 CT 图像和来自 Lung Image Database Consortium(LIDC)和 ANODE09 的两组公共数据集进行实验,检查并比较了我们提出的方法与其他有效方法的性能。实性、非实性和空洞性结节的检测率达到 89%;假阳性的数量为 7.3/扫描,所有检测到的结节的位置都被正确识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验