Suppr超能文献

神经过程如何产生认知?用视觉工作记忆的动态模型同时预测大脑和行为。

How do neural processes give rise to cognition? Simultaneously predicting brain and behavior with a dynamic model of visual working memory.

机构信息

Department of Psychology, University of Tennessee, Knoxville.

Department of Radiology, University of Iowa.

出版信息

Psychol Rev. 2021 Mar;128(2):362-395. doi: 10.1037/rev0000264. Epub 2021 Feb 11.

Abstract

There is consensus that activation within distributed functional brain networks underlies human thought. The impact of this consensus is limited, however, by a gap that exists between data-driven correlational analyses that specify where functional brain activity is localized using functional magnetic resonance imaging (fMRI), and neural process accounts that specify how neural activity unfolds through time to give rise to behavior. Here, we show how an integrative cognitive neuroscience approach may bridge this gap. In an exemplary study of visual working memory, we use multilevel Bayesian statistics to demonstrate that a neural dynamic model simultaneously explains behavioral data and predicts localized patterns of brain activity, outperforming standard analytic approaches to fMRI. The model explains performance on both correct trials and incorrect trials where errors in change detection emerge from neural fluctuations amplified by neural interaction. Critically, predictions of the model run counter to cognitive theories of the origin of errors in change detection. Results reveal neural patterns predicted by the model within regions of the dorsal attention network that have been the focus of much debate. The model-based analysis suggests that key areas in the dorsal attention network such as the intraparietal sulcus play a central role in change detection rather than working memory maintenance, counter to previous interpretations of fMRI studies. More generally, the integrative cognitive neuroscience approach used here establishes a framework for directly testing theories of cognitive and brain function using the combined power of behavioral and fMRI data. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

摘要

人们普遍认为,人类的思维是由分布在大脑功能网络中的激活所产生的。然而,这种共识的影响是有限的,因为存在着一个差距,即数据驱动的相关分析指定了使用功能磁共振成像(fMRI)定位功能大脑活动的位置,而神经过程的解释指定了神经活动如何随时间展开以产生行为。在这里,我们展示了综合认知神经科学方法如何弥合这一差距。在一项视觉工作记忆的典范研究中,我们使用多层次贝叶斯统计来证明,一个神经动力学模型可以同时解释行为数据并预测局部的大脑活动模式,优于 fMRI 的标准分析方法。该模型不仅解释了正确试验的表现,还解释了错误试验的表现,其中错误的变化检测是由神经相互作用放大的神经波动引起的。关键的是,该模型的预测与变化检测中错误起源的认知理论相悖。结果揭示了模型所预测的神经模式,这些模式位于背侧注意网络的区域内,这些区域一直是许多争论的焦点。基于模型的分析表明,背侧注意网络中的关键区域,如顶内沟,在变化检测中起着核心作用,而不是工作记忆维持,这与之前对 fMRI 研究的解释相悖。更一般地说,这里使用的综合认知神经科学方法为使用行为和 fMRI 数据的综合力量直接测试认知和大脑功能理论建立了一个框架。

相似文献

本文引用的文献

3
Approaches to Analysis in Model-based Cognitive Neuroscience.基于模型的认知神经科学中的分析方法。
J Math Psychol. 2017 Feb;76(B):65-79. doi: 10.1016/j.jmp.2016.01.001. Epub 2016 Feb 17.
4
Model-based cognitive neuroscience.基于模型的认知神经科学。
J Math Psychol. 2017 Feb;76(Pt B):59-64. doi: 10.1016/j.jmp.2016.10.010. Epub 2016 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验