Suppr超能文献

在基于生物安全的水产养殖育种计划中克服基因型与环境相互作用的基因组选择策略。

Genomic selection strategies to overcome genotype by environment interactions in biosecurity-based aquaculture breeding programs.

作者信息

Kang Ziyi, Kong Jie, Li Qi, Sui Juan, Dai Ping, Luo Kun, Meng Xianhong, Chen Baolong, Cao Jiawang, Tan Jian, Fu Qiang, Xing Qun, Luan Sheng

机构信息

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China.

Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, China.

出版信息

Genet Sel Evol. 2025 Jan 22;57(1):2. doi: 10.1186/s12711-025-00949-3.

Abstract

BACKGROUND

Family-based selective breeding programs typically employ both between-family and within-family selection in aquaculture. However, these programs may exhibit a reduced genetic gain in the presence of a genotype by environment interactions (G × E) when employing biosecurity-based breeding schemes (BS), compared to non-biosecurity-based breeding schemes (NBS). Fortunately, genomic selection shows promise in improving genetic gain by taking within-family variance into account. Stochastic simulation was employed to evaluate genetic gain and G × E trends in BS for improving the body weight of L. vannamei, considering selective genotyping strategies for test group (TG) at a commercial farm environment (CE), the number individuals of the selection group (SG) genotyped at nucleus breeding center (NE), and varying levels of G × E.

RESULTS

The loss of genetic gain in BS ranged from 9.4 to 38.9% in pedigree-based selection and was more pronounced when G × E was stronger, as quantified by a lower genetic correlation for body weight between NE and CE. Genomic selection, particularly with selective genotyping of TG individuals with extreme performance, effectively offset the loss of genetic gain. With a genetic correlation of 0.8, genotyping 20 SG individuals in each candidate family achieved 93.2% of the genetic gain observed for NBS. However, when the genetic correlation fell below 0.5, the number of genotyped SG individuals per family had to be increased to 50 or more. Genetic gain improved by on average 9.4% when the number of genotyped SG individuals rose from 20 to 50, but the increase in genetic gain averaged only 2.4% when expanding from 50 to 80 individuals genotyped. In addition, the genetic correlation decreased by on average 0.13 over 30 generations of selection when performing BS and the genetic correlation fluctuated across generations.

CONCLUSIONS

Genomic selection can effectively compensate for the loss of genetic gain in BS due to G × E. However, the number of genotyped SG individuals and the level of G × E significantly affected the extra genetic gain from genomic selection. A family-based BS selective breeding program should monitor the level of G × E and genotyping 50 SG individuals per candidate family to minimize the loss of genetic gain due to G × E, unless the level of G × E is confirmed to be low.

摘要

背景

在水产养殖中,基于家系的选择性育种计划通常采用家系间选择和家系内选择。然而,与非生物安全育种方案(NBS)相比,当采用基于生物安全的育种方案(BS)时,在存在基因型与环境互作(G×E)的情况下,这些计划可能会表现出遗传进展降低。幸运的是,基因组选择有望通过考虑家系内方差来提高遗传进展。在商业养殖环境(CE)中,考虑测试组(TG)的选择性基因分型策略、在核心育种中心(NE)进行基因分型的选择组(SG)个体数量以及不同水平的G×E,采用随机模拟来评估基于生物安全的育种方案在提高凡纳滨对虾体重方面的遗传进展和G×E趋势。

结果

在基于系谱的选择中,基于生物安全的育种方案中遗传进展的损失范围为9.4%至38.9%,当G×E更强时更为明显,这通过NE和CE之间体重的较低遗传相关性来量化。基因组选择,特别是对具有极端表现的TG个体进行选择性基因分型,有效地抵消了遗传进展的损失。在遗传相关性为0.8时,对每个候选家系中的20个SG个体进行基因分型可实现NBS观察到的遗传进展的93.2%。然而,当遗传相关性降至0.5以下时,每个家系中基因分型的SG个体数量必须增加到50个或更多。当基因分型的SG个体数量从20个增加到50个时,遗传进展平均提高了9.4%,但从50个增加到80个基因分型个体时,遗传进展的增加平均仅为2.4%。此外,在进行基于生物安全的育种方案时,经过30代选择,遗传相关性平均下降了0.13,并且遗传相关性在各代之间波动。

结论

基因组选择可以有效补偿基于生物安全的育种方案中由于G×E导致的遗传进展损失。然而,基因分型的SG个体数量和G×E水平显著影响基因组选择带来的额外遗传进展。基于家系的生物安全育种方案应监测G×E水平,并对每个候选家系中的50个SG个体进行基因分型,以尽量减少由于G×E导致的遗传进展损失,除非确认G×E水平较低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9efb/11752716/36b0f5640a12/12711_2025_949_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验