Suppr超能文献

针对股骨骨增强的患者特定有限元建模。

Patient-specific finite element modeling for femoral bone augmentation.

机构信息

Laboratory for Computational Sensing & Robotics, Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Med Eng Phys. 2013 Jun;35(6):860-5. doi: 10.1016/j.medengphy.2013.01.003. Epub 2013 Feb 1.

Abstract

The aim of this study was to provide a fast and accurate finite element (FE) modeling scheme for predicting bone stiffness and strength suitable for use within the framework of a computer-assisted osteoporotic femoral bone augmentation surgery system. The key parts of the system, i.e. preoperative planning and intraoperative assessment of the augmentation, demand the finite element model to be solved and analyzed rapidly. Available CT scans and mechanical testing results from nine pairs of osteoporotic femur bones, with one specimen from each pair augmented by polymethylmethacrylate (PMMA) bone cement, were used to create FE models and compare the results with experiments. Correlation values of R(2)=0.72-0.95 were observed between the experiments and FEA results which, combined with the fast model convergence (~3 min for ~250,000 degrees of freedom), makes the presented modeling approach a promising candidate for the intended application of preoperative planning and intraoperative assessment of bone augmentation surgery.

摘要

本研究旨在提供一种快速准确的有限元(FE)建模方案,用于预测适合计算机辅助骨质疏松性股骨骨增强手术系统框架内使用的骨刚度和强度。该系统的关键部分,即增强手术的术前规划和术中评估,需要快速求解和分析有限元模型。利用九对骨质疏松性股骨的 CT 扫描和力学测试结果,其中每对中的一个标本用聚甲基丙烯酸甲酯(PMMA)骨水泥增强,创建 FE 模型并将结果与实验进行比较。实验和有限元分析结果之间观察到相关系数 R(2)=0.72-0.95,结合快速的模型收敛(约 250,000 个自由度,~3 分钟),使得所提出的建模方法成为术前规划和术中评估骨增强手术的有前途的候选方法。

相似文献

1
Patient-specific finite element modeling for femoral bone augmentation.针对股骨骨增强的患者特定有限元建模。
Med Eng Phys. 2013 Jun;35(6):860-5. doi: 10.1016/j.medengphy.2013.01.003. Epub 2013 Feb 1.

引用本文的文献

2
Finite element analysis of patient-specific additive-manufactured implants.患者定制增材制造植入物的有限元分析
Front Bioeng Biotechnol. 2024 May 9;12:1386816. doi: 10.3389/fbioe.2024.1386816. eCollection 2024.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验