Suppr超能文献

脑胶质瘤生长的数学建模:利用弥散张量成像(DTI)数据预测癌症侵袭的各向异性途径。

Mathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion.

机构信息

Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.

出版信息

J Theor Biol. 2013 Apr 21;323:25-39. doi: 10.1016/j.jtbi.2013.01.014. Epub 2013 Jan 29.

Abstract

The nonuniform growth of certain forms of cancer can present significant complications for their treatment, a particularly acute problem in gliomas. A number of experimental results have suggested that invasion is facilitated by the directed movement of cells along the aligned neural fibre tracts that form a large component of the white matter. Diffusion tensor imaging (DTI) provides a window for visualising this anisotropy and gaining insight on the potential invasive pathways. In this paper we develop a mesoscopic model for glioma invasion based on the individual migration pathways of invading cells along the fibre tracts. Via scaling we obtain a macroscopic model that allows us to explore the overall growth of a tumour. To connect DTI data to parameters in the macroscopic model we assume that directional guidance along fibre tracts is described by a bimodal von Mises-Fisher distribution (a normal distribution on a unit sphere) and parametrised according to the directionality and degree of anisotropy in the diffusion tensors. We demonstrate the results in a simple model for glioma growth, exploiting both synthetic and genuine DTI datasets to reveal the potentially crucial role of anisotropic structure on invasion.

摘要

某些形式的癌症的非均匀生长可能会给治疗带来重大并发症,这在神经胶质瘤中是一个特别严重的问题。许多实验结果表明,细胞沿着形成大部分白质的定向神经纤维束的定向运动促进了侵袭。扩散张量成像(DTI)提供了一个可视化各向异性的窗口,并深入了解潜在的侵袭途径。在本文中,我们基于纤维束中侵袭细胞的个体迁移途径,为神经胶质瘤侵袭开发了一个介观模型。通过缩放,我们得到了一个宏观模型,使我们能够探索肿瘤的整体生长。为了将 DTI 数据与宏观模型中的参数联系起来,我们假设纤维束中的定向引导由双模态冯·米塞斯-费舍尔分布(单位球上的正态分布)描述,并根据扩散张量的方向性和各向异性程度进行参数化。我们在一个简单的神经胶质瘤生长模型中展示了结果,利用合成和真实的 DTI 数据集来揭示各向异性结构对侵袭的潜在关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验