Roniotis Alexandros, Manikis Georgios C, Sakkalis Vangelis, Zervakis Michalis E, Karatzanis Ioannis, Marias Kostas
Institute of Computer Science, Foundation for Research and Technology, GR-700 13 Heraklion, Greece.
IEEE Trans Inf Technol Biomed. 2012 Mar;16(2):255-63. doi: 10.1109/TITB.2011.2171190. Epub 2011 Oct 10.
Glioma, especially glioblastoma, is a leading cause of brain cancer fatality involving highly invasive and neoplastic growth. Diffusive models of glioma growth use variations of the diffusion-reaction equation in order to simulate the invasive patterns of glioma cells by approximating the spatiotemporal change of glioma cell concentration. The most advanced diffusive models take into consideration the heterogeneous velocity of glioma in gray and white matter, by using two different discrete diffusion coefficients in these areas. Moreover, by using diffusion tensor imaging (DTI), they simulate the anisotropic migration of glioma cells, which is facilitated along white fibers, assuming diffusion tensors with different diffusion coefficients along each candidate direction of growth. Our study extends this concept by fully exploiting the proportions of white and gray matter extracted by normal brain atlases, rather than discretizing diffusion coefficients. Moreover, the proportions of white and gray matter, as well as the diffusion tensors, are extracted by the respective atlases; thus, no DTI processing is needed. Finally, we applied this novel glioma growth model on real data and the results indicate that prognostication rates can be improved.
胶质瘤,尤其是胶质母细胞瘤,是导致脑癌死亡的主要原因,其具有高度侵袭性和肿瘤性生长。胶质瘤生长的扩散模型使用扩散反应方程的变体,通过近似胶质瘤细胞浓度的时空变化来模拟胶质瘤细胞的侵袭模式。最先进的扩散模型考虑到胶质瘤在灰质和白质中的异质速度,在这些区域使用两个不同的离散扩散系数。此外,通过使用扩散张量成像(DTI),它们模拟胶质瘤细胞的各向异性迁移,这种迁移沿着白质纤维更容易发生,假设沿着每个候选生长方向具有不同扩散系数的扩散张量。我们的研究通过充分利用正常脑图谱提取的白质和灰质比例来扩展这一概念,而不是离散化扩散系数。此外,白质和灰质的比例以及扩散张量由各自的图谱提取;因此,不需要进行DTI处理。最后,我们将这种新型胶质瘤生长模型应用于实际数据,结果表明可以提高预测率。