State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
Mol Plant. 2013 May;6(3):768-80. doi: 10.1093/mp/sst025. Epub 2013 Feb 1.
Tricheary elements (TEs), wrapped by secondary cell wall, play essential roles in water, mineral, and nutrient transduction. Cadmium (Cd) is a toxic heavy metal that is absorbed by roots and transported to shoot, leaves, and grains through vascular systems in plants. As rice is a major source of Cd intake, many efforts have been made to establish 'low-Cd rice'. However, no links have been found between cellulose biosynthesis and cadmium accumulation. We report here a rice brittle culm13 mutant, resulting from a novel missense mutation (E101K) [corrected] in the N-terminus of cellulose synthase subunit 9 (CESA9). Except for the abnormal mechanical strength, the mutant plants are morphologically indistinguishable from the wild-type plants. Transmission electron microscopy (TEM) and chemical analyses showed a slight reduction in secondary wall thickness and 22% decrease in cellulose content in bc13 plants. Moreover, this mutation unexpectedly confers the mutant plants Cd tolerance due to less Cd accumulation in leaves. Expression analysis of the genes required for Cd uptake and transport revealed complicated alterations after applying Cd to wild-type and bc13. The mutants were further found to have altered vascular structure. More importantly, Cd concentration in the xylem saps from the bc13 plants was significantly lower than that from the wild-type. Combining the analyses of CESA9 gene expression and Cd content retention in the cell-wall residues, we conclude that CESA9(E101K) [corrected] mutation alters cell-wall properties in the conducting tissues, which consequently affects Cd translocation efficiency that largely contributes to the low Cd accumulation in the mutant plants.
木质部元素(TEs)被次生细胞壁包裹,在水、矿物质和养分转导中发挥重要作用。镉(Cd)是一种有毒重金属,它被植物根系吸收,并通过维管束系统运输到地上部分、叶片和籽粒。由于水稻是镉摄入的主要来源,因此人们做了很多努力来培育“低镉水稻”。然而,尚未发现纤维素生物合成与镉积累之间存在联系。我们在这里报告了一个水稻脆秆 13 突变体,它是由于纤维素合成酶亚基 9(CESA9)N 端的一个新的错义突变(E101K)[更正]引起的。除了机械强度异常外,突变体植物在形态上与野生型植物没有区别。透射电子显微镜(TEM)和化学分析表明,bc13 植株的次生细胞壁厚度略有减少,纤维素含量减少 22%。此外,由于叶片中 Cd 积累减少,这种突变出人意料地赋予了突变体植物 Cd 耐受性。对 Cd 吸收和转运所需基因的表达分析表明,在施加 Cd 后,野生型和 bc13 中的基因表达发生了复杂的改变。进一步发现突变体具有改变的脉管结构。更重要的是,bc13 植株木质部汁液中的 Cd 浓度明显低于野生型。结合 CESA9 基因表达和细胞壁残留物中 Cd 含量保留的分析,我们得出结论,CESA9(E101K)[更正]突变改变了导组织的细胞壁特性,从而影响 Cd 易位效率,这在很大程度上导致了突变体植物中 Cd 积累的减少。