An Yi, Wang Shi-Qi, Jia Xin-Yi, Jiao Xue, Qu Mei-Qiao, Dong Yan, Wang Zhong-Yuhan, Ma Zhong-Yi, Yang Song, Han Xiao, Huang Li-Chao, Chen Ning-Ning, Jiang Cheng, Lu Meng-Zhu, Dai Jin-Feng, Zhang Jin
National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang Key Laboratory of Forest Genetics and Breeding, Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
China Flower Association, Beijing, China.
Plant Biotechnol J. 2025 Jul;23(7):2824-2838. doi: 10.1111/pbi.70115. Epub 2025 Apr 29.
The urgent need to replace petroleum-derived materials with sustainable alternatives drives innovation at the nexus of plant biotechnology and materials science. Here, we engineered Populus alba × P. glandulosa '84 K' through CRISPR-Cas9-mediated knockout of PagGLR2.8, a glutamate receptor gene regulating vascular development, to investigate its role in fibre biosynthesis and composite performance. Knockout of PagGLR2.8 improved the quality of poplar fibre by altering the structure and development mode of poplar vascular tissue. Our study established the relationship between fibre quantity and structure and the performance of polylactic acid (PLA) composites. The mechanical and fire-resistance properties of these transgenic plant fibres/PLA composites significantly outperformed those of pure PLA, demonstrating the potential of phloem fibres to reinforce toughened composites. Notably, we also evaluated flammability and dripping behaviours, with findings indicating that our optimised fibre/PLA composites exhibit superior strengths, modulus, fire resistance, and anti-dripping, surpassing those of PLA. This research unveils a groundbreaking approach to regulating composite properties through genetic manipulation and highlights the promising potential of plant-derived materials in enriching forest resources and advancing the sustainable utilisation of poplar fibres and polymers.
用可持续替代品取代石油衍生材料的迫切需求推动了植物生物技术与材料科学交叉领域的创新。在此,我们通过CRISPR-Cas9介导敲除调控维管发育的谷氨酸受体基因PagGLR2.8,对银白杨×腺毛杨‘84K’进行基因工程改造,以研究其在纤维生物合成和复合材料性能中的作用。敲除PagGLR2.8通过改变杨树维管组织的结构和发育模式提高了杨树纤维质量。我们的研究确立了纤维数量和结构与聚乳酸(PLA)复合材料性能之间的关系。这些转基因植物纤维/PLA复合材料的力学性能和耐火性能显著优于纯PLA,证明了韧皮纤维增强增韧复合材料的潜力。值得注意的是,我们还评估了可燃性和滴落行为,结果表明,我们优化后的纤维/PLA复合材料具有卓越的强度、模量、耐火性和抗滴落性能,超过了PLA。这项研究揭示了一种通过基因操作调控复合材料性能的开创性方法,并突出了植物源材料在丰富森林资源以及推动杨树纤维和聚合物可持续利用方面的广阔潜力。