Suppr超能文献

基于葡萄糖氧化酶纳米管的酶生物燃料电池,具有改进的漆酶生物阴极。

Glucose oxidase nanotube-based enzymatic biofuel cells with improved laccase biocathodes.

机构信息

Department of Physics and National, Core Research Center for Nanomedical Technology, Yonsei University, Seoul, Korea.

出版信息

Phys Chem Chem Phys. 2013 Mar 14;15(10):3510-7. doi: 10.1039/c3cp00074e. Epub 2013 Feb 4.

Abstract

Glucose/O(2) biofuel cells (BFCs) with an improved power density and stability were developed, using glucose oxidase (GOD) nanotubes with polypyrrole (PPy)-carbon nanotubes (CNTs)-GOD layers deposited on their surface as an anode and a PPy-laccase-2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) film type cathode. The GOD nanotubes were fabricated within the nanopores of an anodized aluminum oxide membrane using a template-assisted layer-by-layer deposition method. These BFCs exhibited a higher volumetric power than the best performance reported previously; this was likely due to an increase in enzyme loading of GOD nanotubes and improved electrochemical properties of the PPy-CNTs-GOD layers. The stability of BFCs was closely related to the leakage of ABTS from the cathode. When the leakage of ABTS was suppressed, the power density of BFCs was nearly unchanged for at least 8 days under physiological conditions.

摘要

采用葡萄糖氧化酶(GOD)纳米管作为阳极,在其表面沉积了聚吡咯(PPy)-碳纳米管(CNTs)-GOD 层,制备了葡萄糖/O2生物燃料电池(BFC),提高了其功率密度和稳定性。采用模板辅助层层沉积法在阳极氧化铝膜的纳米孔中制备了 GOD 纳米管。这些 BFC 的体积功率高于之前报道的最佳性能;这可能是由于 GOD 纳米管的酶负载增加和 PPy-CNTs-GOD 层的电化学性能得到改善。BFC 的稳定性与阴极中 ABTS 的泄漏密切相关。当抑制 ABTS 的泄漏时,在生理条件下,BFC 的功率密度至少在 8 天内几乎不变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验