Buaki-Sogó Mireia, García-Carmona Laura, Gil-Agustí Mayte, García-Pellicer Marta, Quijano-López Alfredo
Instituto Tecnológico de la Energía (ITE), Avenida Juan de la Cierva 24, 46980 Paterna, Spain.
Instituto de Tecnología Eléctrica, Universitat Politècnica de València, Camino de Vera s/n Edificio 6C, 46022 Valencia, Spain.
Nanomaterials (Basel). 2021 Aug 12;11(8):2052. doi: 10.3390/nano11082052.
Wearable sensors for non-invasive monitoring constitute a growing technology in many industrial fields, such as clinical or sport monitoring. However, one of the main challenges in wearable sensing is the development of bioelectrodes via the use of flexible and stretchable materials capable of maintaining conductive and biocompatible properties simultaneously. In this study, chitosan-carbon black (CH-CB) membranes have been synthesized using a straightforward and versatile strategy and characterized in terms of their composition and their electrical and mechanical properties. In this sense, CH-CB membranes showed good conductivity and mechanical resistance thanks to the presence of carbon black, which decreases the insulating behavior of chitosan, while flexibility and biocompatibility are maintained due to the dual composition of the membrane. Thus, flexible and biocompatible conductive bioelectrodes have been developed by the combined use of CH and CB without the use of toxic reagents, extra energy input, or long reaction times. The membranes were modified using the enzymes Glucose Oxidase and Laccase in order to develop flexible and biocompatible bioelectrodes for enzymatic glucose biofuel cells (BFCs) and glucose detection. A BFC assembled using the flexible bioelectrodes developed was able to deliver 15 µW cm, using just 1 mM glucose as biofuel, and up to 21.3 µW·cm with higher glucose concentration. Additionally, the suitability of the CH-CB membranes to be used as a glucose sensor in a linear range from 100 to 600 µM with a limit of detection (LOD) of 76 µM has been proven. Such demonstrations for energy harvesting and sensing capabilities of the developed membrane pave the way for their use in wearable sensing and energy harvesting technologies in the clinical field due to their good mechanical, electrical, and biocompatible properties.
用于无创监测的可穿戴传感器在许多工业领域,如临床或运动监测中,正成为一项不断发展的技术。然而,可穿戴传感的主要挑战之一是通过使用能够同时保持导电和生物相容性的柔性和可拉伸材料来开发生物电极。在本研究中,壳聚糖-炭黑(CH-CB)膜采用简单通用的策略合成,并对其组成、电学和力学性能进行了表征。从这个意义上说,由于炭黑的存在,CH-CB膜表现出良好的导电性和机械抗性,炭黑降低了壳聚糖的绝缘性能,同时由于膜的双重组成,保持了柔韧性和生物相容性。因此,通过联合使用CH和CB,无需使用有毒试剂、额外能量输入或长时间反应,就开发出了柔性且生物相容的导电生物电极。为了开发用于酶促葡萄糖生物燃料电池(BFC)和葡萄糖检测的柔性且生物相容的生物电极,使用葡萄糖氧化酶和漆酶对膜进行了修饰。使用所开发的柔性生物电极组装的BFC,仅使用1 mM葡萄糖作为生物燃料时能够提供15 μW/cm²,葡萄糖浓度更高时可达21.3 μW·cm²。此外,已证明CH-CB膜适用于在100至600 μM的线性范围内用作葡萄糖传感器,检测限(LOD)为76 μM。所开发膜的这种能量收集和传感能力的演示,因其良好的机械、电学和生物相容性,为其在临床领域的可穿戴传感和能量收集技术中的应用铺平了道路。