Institute of Legal Medicine, Jena University Hospital-Friedrich Schiller University Jena, Fürstengraben 23, 07740, Jena, Germany,
Int J Legal Med. 2013 Nov;127(6):1055-63. doi: 10.1007/s00414-013-0827-6. Epub 2013 Feb 3.
Kinship relation and, in particular, paternity probability estimation using a Bayesian approach require the input of a priori probabilities of different hypotheses. In practical case work, a priori probabilities or priors, for short, must often be estimated using only common sense and symmetry arguments because in most cases, there is no evidence-based information on which the priors may be determined. In contrast to the accuracy of the likelihood probabilities or the likelihood ratios, the precision of the priors is usually very poor. Thus, a quantitative estimation of the priors' influence on the paternity probability is desirable. This article presents exact formulae to define sharp minimum and maximum boundaries of posterior probabilities as a function of prior boundaries which may be applied in kinship cases with varying numbers of hypotheses and also presents two case examples.
亲属关系,特别是使用贝叶斯方法进行的父权概率估计,需要输入不同假设的先验概率。在实际案例工作中,由于在大多数情况下,没有基于证据的信息可以确定先验概率,因此必须仅使用常识和对称论证来估计先验概率或简称为先验。与似然概率或似然比的准确性相比,先验的精度通常很差。因此,期望对先验概率对父权概率的影响进行定量估计。本文提出了精确的公式,以定义后验概率作为先验概率边界的函数的尖锐最小和最大边界,可应用于具有不同数量假设的亲属关系案例,并提供了两个案例示例。