Suppr超能文献

恶臭假单胞菌 F1 菌游动细胞对苯乙酸的趋化性是由能量趋化性受体 Aer2 介导的。

Taxis of Pseudomonas putida F1 toward phenylacetic acid is mediated by the energy taxis receptor Aer2.

机构信息

Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, California, USA.

出版信息

Appl Environ Microbiol. 2013 Apr;79(7):2416-23. doi: 10.1128/AEM.03895-12. Epub 2013 Feb 1.

Abstract

The phenylacetic acid (PAA) degradation pathway is a widely distributed funneling pathway for the catabolism of aromatic compounds, including the environmental pollutants styrene and ethylbenzene. However, bacterial chemotaxis to PAA has not been studied. The chemotactic strain Pseudomonas putida F1 has the ability to utilize PAA as a sole carbon and energy source. We identified a putative PAA degradation gene cluster (paa) in P. putida F1 and demonstrated that PAA serves as a chemoattractant. The chemotactic response was induced during growth with PAA and was dependent on PAA metabolism. A functional cheA gene was required for the response, indicating that PAA is sensed through the conserved chemotaxis signal transduction system. A P. putida F1 mutant lacking the energy taxis receptor Aer2 was deficient in PAA taxis, indicating that Aer2 is responsible for mediating the response to PAA. The requirement for metabolism and the role of Aer2 in the response indicate that P. putida F1 uses energy taxis to detect PAA. We also revealed that PAA is an attractant for Escherichia coli; however, a mutant lacking a functional Aer energy receptor had a wild-type response to PAA in swim plate assays, suggesting that PAA is detected through a different mechanism in E. coli. The role of Aer2 as an energy taxis receptor provides the potential to sense a broad range of aromatic growth substrates as chemoattractants. Since chemotaxis has been shown to enhance the biodegradation of toxic pollutants, the ability to sense PAA gradients may have implications for the bioremediation of aromatic hydrocarbons that are degraded via the PAA pathway.

摘要

苯乙酸(PAA)降解途径是一种广泛分布的芳香族化合物分解途径,包括环境污染物苯乙烯和乙苯。然而,细菌对 PAA 的趋化作用尚未得到研究。趋化性菌株恶臭假单胞菌 F1 具有利用 PAA 作为唯一碳源和能源的能力。我们在恶臭假单胞菌 F1 中鉴定出一个假定的 PAA 降解基因簇(paa),并证明 PAA 是一种趋化引诱物。在以 PAA 生长时会诱导趋化反应,并且依赖于 PAA 代谢。响应需要功能性 cheA 基因,表明 PAA 通过保守的趋化信号转导系统感知。缺乏能量趋化受体 Aer2 的恶臭假单胞菌 F1 突变体在 PAA 趋化性方面存在缺陷,表明 Aer2 负责介导对 PAA 的响应。对代谢的要求和 Aer2 在响应中的作用表明,恶臭假单胞菌 F1 利用能量趋化作用来检测 PAA。我们还揭示了 PAA 是大肠杆菌的一种引诱物;然而,在泳板测定中,缺乏功能 Aer 能量受体的突变体对 PAA 有野生型反应,表明大肠杆菌通过不同的机制检测 PAA。Aer2 作为能量趋化受体的作用为检测广泛的芳香族生长底物作为趋化引诱物提供了潜力。由于趋化作用已被证明可以增强有毒污染物的生物降解,因此感知 PAA 梯度的能力可能对通过 PAA 途径降解的芳香烃的生物修复具有重要意义。

相似文献

1
Taxis of Pseudomonas putida F1 toward phenylacetic acid is mediated by the energy taxis receptor Aer2.
Appl Environ Microbiol. 2013 Apr;79(7):2416-23. doi: 10.1128/AEM.03895-12. Epub 2013 Feb 1.
2
Pseudomonas putida F1 uses energy taxis to sense hydroxycinnamic acids.
Microbiology (Reading). 2017 Oct;163(10):1490-1501. doi: 10.1099/mic.0.000533. Epub 2017 Sep 28.
3
Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene.
Appl Environ Microbiol. 2000 Sep;66(9):4098-104. doi: 10.1128/AEM.66.9.4098-4104.2000.
4
Chemotaxis of Pseudomonas putida F1 to Alcohols Is Mediated by the Carboxylic Acid Receptor McfP.
Appl Environ Microbiol. 2019 Oct 30;85(22). doi: 10.1128/AEM.01625-19. Print 2019 Nov 15.
5
An aerotaxis transducer gene from Pseudomonas putida.
FEMS Microbiol Lett. 2000 Jan 1;182(1):177-83. doi: 10.1111/j.1574-6968.2000.tb08893.x.
6
The sigma-factor FliA, ppGpp and DksA coordinate transcriptional control of the aer2 gene of Pseudomonas putida.
Environ Microbiol. 2010 Jun;12(6):1439-51. doi: 10.1111/j.1462-2920.2009.02139.x. Epub 2010 Jan 18.
7
Regulation of phenylacetic acid uptake is σ54 dependent in Pseudomonas putida CA-3.
BMC Microbiol. 2011 Oct 13;11:229. doi: 10.1186/1471-2180-11-229.

引用本文的文献

1
Gene expression changes throughout the life cycle allow a bacterial plant pathogen to persist in diverse environmental habitats.
PLoS Pathog. 2023 Dec 19;19(12):e1011888. doi: 10.1371/journal.ppat.1011888. eCollection 2023 Dec.
2
Microbial strategies for degradation of microplastics generated from COVID-19 healthcare waste.
Environ Res. 2023 Jan 1;216(Pt 1):114438. doi: 10.1016/j.envres.2022.114438. Epub 2022 Sep 28.
3
The Phenylacetic Acid Catabolic Pathway Regulates Antibiotic and Oxidative Stress Responses in Acinetobacter.
mBio. 2022 Jun 28;13(3):e0186321. doi: 10.1128/mbio.01863-21. Epub 2022 Apr 25.
5
Hybrid Two-Component Sensors for Identification of Bacterial Chemoreceptor Function.
Appl Environ Microbiol. 2019 Oct 30;85(22). doi: 10.1128/AEM.01626-19. Print 2019 Nov 15.
6
Chemotaxis of Pseudomonas putida F1 to Alcohols Is Mediated by the Carboxylic Acid Receptor McfP.
Appl Environ Microbiol. 2019 Oct 30;85(22). doi: 10.1128/AEM.01625-19. Print 2019 Nov 15.
7
Adaptive Responses of to Toxic Organic Extracellular Electron Acceptor Azo Dyes in Anaerobic Respiration.
Appl Environ Microbiol. 2019 Aug 1;85(16). doi: 10.1128/AEM.00550-19. Print 2019 Aug 15.
8
Chemotaxis Towards Aromatic Compounds: Insights from .
Int J Mol Sci. 2019 Jun 1;20(11):2701. doi: 10.3390/ijms20112701.
9
Microbial Ecotoxicology of Marine Plastic Debris: A Review on Colonization and Biodegradation by the "Plastisphere".
Front Microbiol. 2019 Apr 25;10:865. doi: 10.3389/fmicb.2019.00865. eCollection 2019.
10
An aryl-homoserine lactone quorum-sensing signal produced by a dimorphic prosthecate bacterium.
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7587-7592. doi: 10.1073/pnas.1808351115. Epub 2018 Jul 2.

本文引用的文献

1
Three types of taxis used in the response of Acidovorax sp. strain JS42 to 2-nitrotoluene.
Appl Environ Microbiol. 2012 Apr;78(7):2306-15. doi: 10.1128/AEM.07183-11. Epub 2012 Jan 27.
2
Phenol sensing by Escherichia coli chemoreceptors: a nonclassical mechanism.
J Bacteriol. 2011 Dec;193(23):6597-604. doi: 10.1128/JB.05987-11. Epub 2011 Sep 30.
3
Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas.
Environ Microbiol. 2011 Jul;13(7):1733-44. doi: 10.1111/j.1462-2920.2011.02493.x. Epub 2011 May 23.
4
Bacterial phenylalanine and phenylacetate catabolic pathway revealed.
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14390-5. doi: 10.1073/pnas.1005399107. Epub 2010 Jul 21.
5
Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors.
Microbiology (Reading). 2010 Aug;156(Pt 8):2283-2293. doi: 10.1099/mic.0.039214-0. Epub 2010 Jun 17.
6
Bacterial energy taxis: a global strategy?
Arch Microbiol. 2010 Jul;192(7):507-20. doi: 10.1007/s00203-010-0575-7. Epub 2010 Apr 22.
7
Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review.
J Hazard Mater. 2009 Sep 30;169(1-3):1-15. doi: 10.1016/j.jhazmat.2009.03.137. Epub 2009 Apr 7.
8
Chemotaxis to pyrimidines and identification of a cytosine chemoreceptor in Pseudomonas putida.
J Bacteriol. 2009 May;191(9):2909-16. doi: 10.1128/JB.01708-08. Epub 2009 Feb 27.
10
Bacterial chemoreceptors: high-performance signaling in networked arrays.
Trends Biochem Sci. 2008 Jan;33(1):9-19. doi: 10.1016/j.tibs.2007.09.014. Epub 2007 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验