Suppr超能文献

巴氏杆菌科成员的粗糙细胞包膜的超微结构分析。

Ultrastructural analysis of the rugose cell envelope of a member of the Pasteurellaceae family.

机构信息

Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA.

出版信息

J Bacteriol. 2013 Apr;195(8):1680-8. doi: 10.1128/JB.02149-12. Epub 2013 Feb 1.

Abstract

Bacterial membranes serve as selective environmental barriers and contain determinants required for bacterial colonization and survival. Cell envelopes of Gram-negative bacteria consist of an outer and an inner membrane separated by a periplasmic space. Most Gram-negative bacteria display a smooth outer surface (e.g., Enterobacteriaceae), whereas members of the Pasteurellaceae and Moraxellaceae families show convoluted surfaces. Aggregatibacter actinomycetemcomitans, an oral pathogen representative of the Pasteurellaceae family, displays a convoluted membrane morphology. This phenotype is associated with the presence of morphogenesis protein C (MorC). Inactivation of the morC gene results in a smooth membrane appearance when visualized by two-dimensional (2D) electron microscopy. In this study, 3D electron microscopy and atomic force microscopy of whole-mount bacterial preparations as well as 3D electron microscopy of ultrathin sections of high-pressure frozen and freeze-substituted specimens were used to characterize the membranes of both wild-type and morC mutant strains of A. actinomycetemcomitans. Our results show that the mutant strain contains fewer convolutions than the wild-type bacterium, which exhibits a higher curvature of the outer membrane and a periplasmic space with 2-fold larger volume/area ratio than the mutant bacterium. The inner membrane of both strains has a smooth appearance and shows connections with the outer membrane, as revealed by visualization and segmentation of 3D tomograms. The present studies and the availability of genetically modified organisms with altered outer membrane morphology make A. actinomycetemcomitans a model organism for examining membrane remodeling and its implications in antibiotic resistance and virulence in the Pasteurellaceae and Moraxellaceae bacterial families.

摘要

细菌膜作为选择性的环境屏障,包含细菌定植和存活所需的决定因素。革兰氏阴性细菌的细胞包膜由外膜和内膜组成,两者之间被周质空间隔开。大多数革兰氏阴性细菌的外表面是光滑的(例如肠杆菌科),而巴斯德氏菌科和莫拉氏菌科的成员则具有卷曲的表面。口腔病原体巴斯德氏菌科的代表菌聚集放线杆菌显示出卷曲的膜形态。这种表型与形态发生蛋白 C(MorC)的存在有关。在二维(2D)电子显微镜下观察时,morC 基因失活会导致膜表面变得光滑。在这项研究中,使用全菌制备物的 3D 电子显微镜和原子力显微镜以及高压冷冻和冷冻置换标本的超薄切片的 3D 电子显微镜来表征野生型和 morC 突变菌株的聚集放线杆菌的膜。我们的结果表明,突变菌株的卷曲数量少于野生型细菌,野生型细菌的外膜曲率更高,周质空间的体积/面积比是突变菌株的两倍。两种菌株的内膜均呈光滑外观,并通过 3D 断层图的可视化和分割显示与外膜相连。本研究以及具有改变的外膜形态的遗传修饰生物体的可用性,使聚集放线杆菌成为研究膜重塑及其在巴斯德氏菌科和莫拉氏菌科细菌家族中的抗生素耐药性和毒力的模型生物。

相似文献

1
Ultrastructural analysis of the rugose cell envelope of a member of the Pasteurellaceae family.
J Bacteriol. 2013 Apr;195(8):1680-8. doi: 10.1128/JB.02149-12. Epub 2013 Feb 1.
7
Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans.
PLoS One. 2012;7(7):e41662. doi: 10.1371/journal.pone.0041662. Epub 2012 Jul 25.
8
Outer membrane vesicles reflect environmental cues in Gallibacterium anatis.
Vet Microbiol. 2013 Dec 27;167(3-4):565-72. doi: 10.1016/j.vetmic.2013.09.005. Epub 2013 Sep 12.
9
The fimbrial protein FlfA from Gallibacterium anatis is a virulence factor and vaccine candidate.
Infect Immun. 2013 Jun;81(6):1964-73. doi: 10.1128/IAI.00059-13. Epub 2013 Mar 18.

引用本文的文献

1
The antimicrobial effect of different vitamin D compounds on and their impact on glycosyltransferase expression.
J Oral Microbiol. 2024 Mar 27;16(1):2327758. doi: 10.1080/20002297.2024.2327758. eCollection 2024.
2
The Trimeric Autotransporter Adhesin EmaA and Infective Endocarditis.
Pathogens. 2024 Jan 23;13(2):99. doi: 10.3390/pathogens13020099.
3
Antibacterial effectiveness of different zinc salts on and : An in-vitro study.
Saudi Dent J. 2023 Nov;35(7):883-890. doi: 10.1016/j.sdentj.2023.07.003. Epub 2023 Jul 6.
4
YhdP, TamB, and YdbH Are Redundant but Essential for Growth and Lipid Homeostasis of the Gram-Negative Outer Membrane.
mBio. 2021 Dec 21;12(6):e0271421. doi: 10.1128/mBio.02714-21. Epub 2021 Nov 16.
5
The antibacterial effects of vitamin D3 against mutans streptococci: an in vitro study.
Eur Oral Res. 2021 Jan 4;55(1):8-15. doi: 10.26650/eor.20210119.
6
Maize is a bacterial TamB homologue required for chloroplast envelope biogenesis.
J Cell Biol. 2019 Aug 5;218(8):2638-2658. doi: 10.1083/jcb.201807166. Epub 2019 Jun 24.
8
Identification of Genes Involved in Biogenesis of Outer Membrane Vesicles (OMVs) in Serovar Typhi.
Front Microbiol. 2019 Feb 4;10:104. doi: 10.3389/fmicb.2019.00104. eCollection 2019.
10
A Nonfimbrial Adhesin of Mediates Biofilm Biogenesis.
Infect Immun. 2018 Dec 19;87(1). doi: 10.1128/IAI.00704-18. Print 2019 Jan.

本文引用的文献

1
Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life.
Infect Immun. 2012 Jun;80(6):1948-57. doi: 10.1128/IAI.06014-11. Epub 2012 Mar 12.
3
Outer membrane lipoprotein Lpp is Gram-negative bacterial cell surface receptor for cationic antimicrobial peptides.
J Biol Chem. 2012 Jan 2;287(1):418-428. doi: 10.1074/jbc.M111.290361. Epub 2011 Nov 14.
4
Assembly of bacterial inner membrane proteins.
Annu Rev Biochem. 2011;80:161-87. doi: 10.1146/annurev-biochem-060409-092524.
5
Escherichia coli cell surface perturbation and disruption induced by antimicrobial peptides BP100 and pepR.
J Biol Chem. 2010 Sep 3;285(36):27536-44. doi: 10.1074/jbc.M110.130955. Epub 2010 Jun 21.
6
The bacterial cell envelope.
Cold Spring Harb Perspect Biol. 2010 May;2(5):a000414. doi: 10.1101/cshperspect.a000414. Epub 2010 Apr 14.
8
Virulence and immunomodulatory roles of bacterial outer membrane vesicles.
Microbiol Mol Biol Rev. 2010 Mar;74(1):81-94. doi: 10.1128/MMBR.00031-09.
10
Membrane-protein structure: Piercing insights.
Nature. 2009 Jun 4;459(7247):651-2. doi: 10.1038/459651a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验