Suppr超能文献

一种混合结构方法分析血清素 4 型受体(5-HT4)的配体结合。

A hybrid structural approach to analyze ligand binding by the serotonin type 4 receptor (5-HT4).

机构信息

Polgenix Inc, Cleveland, Ohio 44106, USA.

出版信息

Mol Cell Proteomics. 2013 May;12(5):1259-71. doi: 10.1074/mcp.M112.025536. Epub 2013 Feb 1.

Abstract

Hybrid structural methods have been used in recent years to understand protein-protein or protein-ligand interactions where high resolution crystallography or NMR data on the protein of interest has been limited. For G protein-coupled receptors (GPCRs), high resolution structures of native structural forms other than rhodopsin have not yet been achieved; gaps in our knowledge have been filled by creative crystallography studies that have developed stable forms of receptors by multiple means. The neurotransmitter serotonin (5-hydroxytryptamine) is a key GPCR-based signaling molecule affecting many physiological manifestations in humans ranging from mood and anxiety to bowel function. However, a high resolution structure of any of the serotonin receptors has not yet been solved. Here, we used structural mass spectrometry along with theoretical computations, modeling, and other biochemical methods to develop a structured model for human serotonin receptor subtype 4(b) in the presence and absence of its antagonist GR125487. Our data confirmed the overall structure predicted by the model and revealed a highly conserved motif in the ligand-binding pocket of serotonin receptors as an important participant in ligand binding. In addition, identification of waters in the transmembrane region provided clues as to likely paths mediating intramolecular signaling. Overall, this study reveals the potential of hybrid structural methods, including mass spectrometry, to probe physiological and functional GPCR-ligand interactions with purified native protein.

摘要

近年来,混合结构方法已被用于研究蛋白质-蛋白质或蛋白质-配体相互作用,这些相互作用的蛋白质的高分辨率晶体学或 NMR 数据有限。对于 G 蛋白偶联受体(GPCR),除了视紫红质之外,其天然结构形式的高分辨率结构尚未实现;通过多种手段开发受体稳定形式的创造性晶体学研究填补了我们知识中的空白。神经递质血清素(5-羟色胺)是一种关键的基于 GPCR 的信号分子,影响人类的许多生理表现,从情绪和焦虑到肠道功能。然而,目前还没有解决任何一种血清素受体的高分辨率结构。在这里,我们使用结构质谱以及理论计算、建模和其他生化方法,在存在和不存在其拮抗剂 GR125487 的情况下,为人类血清素受体亚型 4(b) 开发了一个结构化模型。我们的数据证实了模型预测的整体结构,并揭示了配体结合口袋中血清素受体的一个高度保守的基序,作为配体结合的重要参与者。此外,鉴定跨膜区域中的水提供了关于介导分子内信号转导的可能途径的线索。总的来说,这项研究揭示了包括质谱在内的混合结构方法的潜力,这些方法可用于探测纯化天然蛋白中生理和功能的 GPCR-配体相互作用。

相似文献

1
A hybrid structural approach to analyze ligand binding by the serotonin type 4 receptor (5-HT4).
Mol Cell Proteomics. 2013 May;12(5):1259-71. doi: 10.1074/mcp.M112.025536. Epub 2013 Feb 1.
3
NMR structure of the thromboxane A2 receptor ligand recognition pocket.
Eur J Biochem. 2004 Jul;271(14):3006-16. doi: 10.1111/j.1432-1033.2004.04232.x.
4
Molecular characterization of a purified 5-HT4 receptor: a structural basis for drug efficacy.
J Biol Chem. 2005 May 27;280(21):20253-60. doi: 10.1074/jbc.M412009200. Epub 2005 Mar 17.
5
Relevance of rhodopsin studies for GPCR activation.
Biochim Biophys Acta. 2014 May;1837(5):674-82. doi: 10.1016/j.bbabio.2013.09.002. Epub 2013 Sep 13.
7
Recognition of privileged structures by G-protein coupled receptors.
J Med Chem. 2004 Feb 12;47(4):888-99. doi: 10.1021/jm0309452.
8
Acidic biphenyl derivatives: synthesis and biological activity of a new series of potent 5-HT(4) receptor antagonists.
Bioorg Med Chem. 2013 Nov 15;21(22):7134-45. doi: 10.1016/j.bmc.2013.09.004. Epub 2013 Sep 11.
9
New insights into the human 5-HT4 receptor binding site: exploration of a hydrophobic pocket.
Br J Pharmacol. 2004 Oct;143(3):361-70. doi: 10.1038/sj.bjp.0705950. Epub 2004 Sep 6.
10
Comparing Class A GPCRs to bitter taste receptors: Structural motifs, ligand interactions and agonist-to-antagonist ratios.
Methods Cell Biol. 2016;132:401-27. doi: 10.1016/bs.mcb.2015.10.005. Epub 2015 Dec 24.

引用本文的文献

1
Advances in mass spectrometry-based footprinting of membrane proteins.
Proteomics. 2022 Apr;22(8):e2100222. doi: 10.1002/pmic.202100222.
3
MEMBRANE PROTEIN STRUCTURES AND INTERACTIONS FROM COVALENT LABELING COUPLED WITH MASS SPECTROMETRY.
Mass Spectrom Rev. 2022 Jan;41(1):51-69. doi: 10.1002/mas.21667. Epub 2020 Nov 4.
4
Using X-ray Footprinting and Mass Spectrometry to Study the Structure and Function of Membrane Proteins.
Protein Pept Lett. 2019;26(1):44-54. doi: 10.2174/0929866526666181128142401.
5
Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions.
Methods. 2018 Jul 15;144:79-93. doi: 10.1016/j.ymeth.2018.04.002. Epub 2018 Apr 7.
6
Protein Footprinting Comes of Age: Mass Spectrometry for Biophysical Structure Assessment.
Mol Cell Proteomics. 2017 May;16(5):706-716. doi: 10.1074/mcp.O116.064386. Epub 2017 Mar 8.
7
Structural basis of ligand interaction with atypical chemokine receptor 3.
Nat Commun. 2017 Jan 18;8:14135. doi: 10.1038/ncomms14135.
8
Synchrotron X-ray footprinting as a method to visualize water in proteins.
J Synchrotron Radiat. 2016 Sep 1;23(Pt 5):1056-69. doi: 10.1107/S1600577516009024. Epub 2016 Jul 27.
9
Protease-activated receptors in hemostasis.
Blood. 2016 Jul 14;128(2):169-77. doi: 10.1182/blood-2015-11-636472. Epub 2016 Apr 28.
10
The G protein-coupled receptor rhodopsin: a historical perspective.
Methods Mol Biol. 2015;1271:3-18. doi: 10.1007/978-1-4939-2330-4_1.

本文引用的文献

1
Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry.
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14882-7. doi: 10.1073/pnas.1209060109. Epub 2012 Aug 27.
2
Discovery, oral pharmacokinetics and in vivo efficacy of a highly selective 5-HT4 receptor agonist: clinical compound TD-2749.
Bioorg Med Chem Lett. 2012 Jul 15;22(14):4849-53. doi: 10.1016/j.bmcl.2012.05.034. Epub 2012 May 15.
3
Conserved activation pathways in G-protein-coupled receptors.
Biochem Soc Trans. 2012 Apr;40(2):383-8. doi: 10.1042/BST20120001.
4
Post-translational modifications of the serotonin type 4 receptor heterologously expressed in mouse rod cells.
Biochemistry. 2012 Jan 10;51(1):214-24. doi: 10.1021/bi201707v. Epub 2011 Dec 20.
5
Diversity and modularity of G protein-coupled receptor structures.
Trends Pharmacol Sci. 2012 Jan;33(1):17-27. doi: 10.1016/j.tips.2011.09.003. Epub 2011 Oct 25.
6
Crystal structure of metarhodopsin II.
Nature. 2011 Mar 31;471(7340):651-5. doi: 10.1038/nature09789. Epub 2011 Mar 9.
8
Future directions of structural mass spectrometry using hydroxyl radical footprinting.
J Mass Spectrom. 2010 Dec;45(12):1373-82. doi: 10.1002/jms.1808.
9
Sf9 cells: a versatile model system to investigate the pharmacological properties of G protein-coupled receptors.
Pharmacol Ther. 2010 Dec;128(3):387-418. doi: 10.1016/j.pharmthera.2010.07.005. Epub 2010 Aug 10.
10
Review of 5-HT4R ligands: state of art and clinical applications.
Curr Top Med Chem. 2010;10(5):527-53. doi: 10.2174/156802610791111551.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验