Suppr超能文献

通过辐射分解和质谱法揭示蛋白质水的结构和动态。

Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry.

机构信息

Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4988, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14882-7. doi: 10.1073/pnas.1209060109. Epub 2012 Aug 27.

Abstract

Water is critical for the structure, stability, and functions of macromolecules. Diffraction and NMR studies have revealed structure and dynamics of bound waters at atomic resolution. However, localizing the sites and measuring the dynamics of bound waters, particularly on timescales relevant to catalysis and macromolecular assembly, is quite challenging. Here we demonstrate two techniques: first, temperature-dependent radiolytic hydroxyl radical labeling with a mass spectrometry (MS)-based readout to identify sites of bulk and bound water interactions with surface and internal residue side chains, and second, H(2)(18)O radiolytic exchange coupled MS to measure the millisecond dynamics of bound water interactions with various internal residue side chains. Through an application of the methods to cytochrome c and ubiquitin, we identify sites of water binding and measure the millisecond dynamics of bound waters in protein crevices. As these MS-based techniques are very sensitive and not protein size limited, they promise to provide unique insights into protein-water interactions and water dynamics for both small and large proteins and their complexes.

摘要

水对于生物大分子的结构、稳定性和功能至关重要。衍射和 NMR 研究已经揭示了在原子分辨率下结合水的结构和动态。然而,定位结合水的位置并测量其动力学,特别是在与催化和生物大分子组装相关的时间尺度上,是相当具有挑战性的。在这里,我们展示了两种技术:首先,基于质谱(MS)读出的温度依赖性辐解羟自由基标记,以识别与表面和内部残基侧链相互作用的体相和结合水的位置,其次,H(2)(18)O 辐解交换偶联 MS 来测量与各种内部残基侧链结合水相互作用的毫秒动力学。通过将这些方法应用于细胞色素 c 和泛素,我们确定了结合水的位置,并测量了蛋白质裂缝中结合水的毫秒动力学。由于这些基于 MS 的技术非常灵敏,并且不受蛋白质大小的限制,它们有望为小分子和大分子及其复合物的蛋白质-水相互作用和水动力学提供独特的见解。

相似文献

1
Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry.
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14882-7. doi: 10.1073/pnas.1209060109. Epub 2012 Aug 27.
2
Visualizing water molecules in transmembrane proteins using radiolytic labeling methods.
Biochemistry. 2010 Feb 9;49(5):827-34. doi: 10.1021/bi901889t.
3
Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes.
Annu Rev Biophys Biomol Struct. 2006;35:251-76. doi: 10.1146/annurev.biophys.35.040405.102050.
4
Structural waters define a functional channel mediating activation of the GPCR, rhodopsin.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14367-72. doi: 10.1073/pnas.0901074106. Epub 2009 Aug 13.
6
Using X-ray Footprinting and Mass Spectrometry to Study the Structure and Function of Membrane Proteins.
Protein Pept Lett. 2019;26(1):44-54. doi: 10.2174/0929866526666181128142401.
7
Use of Protein Cross-Linking and Radiolytic Labeling To Elucidate the Structure of PsbO within Higher-Plant Photosystem II.
Biochemistry. 2016 Jun 14;55(23):3204-13. doi: 10.1021/acs.biochem.6b00365. Epub 2016 Jun 3.
8
Detection of structural waters and their role in structural dynamics of rhodopsin activation.
Methods Mol Biol. 2015;1271:97-111. doi: 10.1007/978-1-4939-2330-4_7.
9
Unfolding of apomyoglobin helices by synchrotron radiolysis and mass spectrometry.
Eur J Biochem. 2001 Nov;268(21):5578-88. doi: 10.1046/j.1432-1033.2001.02492.x.

引用本文的文献

1
The Importance of Structural Water in HDAC8 for Correct Binding Pose Applied for Drug Design of Anticancer Molecules.
Anticancer Agents Med Chem. 2024;24(15):1109-1125. doi: 10.2174/0118715206299644240523054454.
2
Precursor Reagent Hydrophobicity Affects Membrane Protein Footprinting.
J Am Soc Mass Spectrom. 2023 Dec 6;34(12):2700-2710. doi: 10.1021/jasms.3c00272. Epub 2023 Nov 15.
3
The Solvation of the CheY Phosphorylation Site Mapped by XFMS.
Int J Mol Sci. 2022 Oct 23;23(21):12771. doi: 10.3390/ijms232112771.
4
An automated liquid jet for fluorescence dosimetry and microsecond radiolytic labeling of proteins.
Commun Biol. 2022 Aug 25;5(1):866. doi: 10.1038/s42003-022-03775-1.
5
Diethylpyrocarbonate Footprints a Membrane Protein in Micelles.
J Am Soc Mass Spectrom. 2021 Nov 3;32(11):2636-2643. doi: 10.1021/jasms.1c00172. Epub 2021 Oct 19.
6
Water Dynamics in Whey-Protein-Based Composite Hydrogels by Means of NMR Relaxometry.
Int J Mol Sci. 2021 Sep 7;22(18):9672. doi: 10.3390/ijms22189672.
7
New high-throughput endstation to accelerate the experimental optimization pipeline for synchrotron X-ray footprinting.
J Synchrotron Radiat. 2021 Sep 1;28(Pt 5):1321-1332. doi: 10.1107/S1600577521005026. Epub 2021 Jul 20.
9
Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications.
Chem Rev. 2020 May 27;120(10):4355-4454. doi: 10.1021/acs.chemrev.9b00815. Epub 2020 Apr 22.
10
Fast Protein Footprinting by X-ray Mediated Radical Trifluoromethylation.
J Am Soc Mass Spectrom. 2020 May 6;31(5):1019-1024. doi: 10.1021/jasms.0c00085. Epub 2020 Apr 21.

本文引用的文献

1
Biophysics: More than a bystander.
Nature. 2011 Oct 26;478(7370):467-8. doi: 10.1038/478467a.
2
Site-resolved measurement of water-protein interactions by solution NMR.
Nat Struct Mol Biol. 2011 Feb;18(2):245-9. doi: 10.1038/nsmb.1955. Epub 2011 Jan 2.
3
Structural analysis of RNA in living cells by in vivo synchrotron X-ray footprinting.
Methods Enzymol. 2009;468:239-58. doi: 10.1016/S0076-6879(09)68012-5.
4
Hydrogen exchange mass spectrometry: what is it and what can it tell us?
Anal Bioanal Chem. 2010 Jun;397(3):967-72. doi: 10.1007/s00216-010-3556-4. Epub 2010 Mar 1.
5
Visualizing water molecules in transmembrane proteins using radiolytic labeling methods.
Biochemistry. 2010 Feb 9;49(5):827-34. doi: 10.1021/bi901889t.
6
Structural waters define a functional channel mediating activation of the GPCR, rhodopsin.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14367-72. doi: 10.1073/pnas.0901074106. Epub 2009 Aug 13.
7
Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors.
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8555-60. doi: 10.1073/pnas.0903545106. Epub 2009 May 11.
10
Nanosecond to microsecond protein dynamics probed by magnetic relaxation dispersion of buried water molecules.
J Am Chem Soc. 2008 Feb 6;130(5):1774-87. doi: 10.1021/ja0775873. Epub 2008 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验