Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4988, USA.
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14882-7. doi: 10.1073/pnas.1209060109. Epub 2012 Aug 27.
Water is critical for the structure, stability, and functions of macromolecules. Diffraction and NMR studies have revealed structure and dynamics of bound waters at atomic resolution. However, localizing the sites and measuring the dynamics of bound waters, particularly on timescales relevant to catalysis and macromolecular assembly, is quite challenging. Here we demonstrate two techniques: first, temperature-dependent radiolytic hydroxyl radical labeling with a mass spectrometry (MS)-based readout to identify sites of bulk and bound water interactions with surface and internal residue side chains, and second, H(2)(18)O radiolytic exchange coupled MS to measure the millisecond dynamics of bound water interactions with various internal residue side chains. Through an application of the methods to cytochrome c and ubiquitin, we identify sites of water binding and measure the millisecond dynamics of bound waters in protein crevices. As these MS-based techniques are very sensitive and not protein size limited, they promise to provide unique insights into protein-water interactions and water dynamics for both small and large proteins and their complexes.
水对于生物大分子的结构、稳定性和功能至关重要。衍射和 NMR 研究已经揭示了在原子分辨率下结合水的结构和动态。然而,定位结合水的位置并测量其动力学,特别是在与催化和生物大分子组装相关的时间尺度上,是相当具有挑战性的。在这里,我们展示了两种技术:首先,基于质谱(MS)读出的温度依赖性辐解羟自由基标记,以识别与表面和内部残基侧链相互作用的体相和结合水的位置,其次,H(2)(18)O 辐解交换偶联 MS 来测量与各种内部残基侧链结合水相互作用的毫秒动力学。通过将这些方法应用于细胞色素 c 和泛素,我们确定了结合水的位置,并测量了蛋白质裂缝中结合水的毫秒动力学。由于这些基于 MS 的技术非常灵敏,并且不受蛋白质大小的限制,它们有望为小分子和大分子及其复合物的蛋白质-水相互作用和水动力学提供独特的见解。