Department of Medicine, Center for Cardiovascular Research, Washington University, Saint Louis, Missouri 63110, USA.
Am J Physiol Heart Circ Physiol. 2013 Apr 15;304(8):H1060-76. doi: 10.1152/ajpheart.00646.2012. Epub 2013 Feb 8.
Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states.
酮体通过进化保守途径进行代谢,这些途径支持生物能量的动态平衡,尤其是在碳水化合物供应不足时,大脑、心脏和骨骼肌中更是如此。酮体的代谢与三羧酸循环、脂肪酸的β氧化、从头合成脂类、固醇生物合成、葡萄糖代谢、线粒体电子传递链、激素信号、细胞内信号转导途径和微生物组相互作用。在这里,我们回顾了酮体代谢的机制以及它们的信号是如何传递的。我们重点介绍了这种代谢途径在心血管疾病状态中的作用、心肌酮体氧化的生物能量益处,以及酮体代谢、肥胖、代谢综合征和动脉粥样硬化之间的预期相互作用。酮体代谢在人体中是可以非侵入性地定量的,并且对营养干预有反应。因此,在疾病模型和人体中进一步研究该途径,最终可能会为特定病理状态提供针对性的诊断策略和治疗方法。