Suppr超能文献

自动三维封闭曲面分割:在 CT 图像中椎体分割的应用。

Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.

机构信息

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA.

出版信息

Int J Comput Assist Radiol Surg. 2016 May;11(5):789-801. doi: 10.1007/s11548-015-1320-0. Epub 2015 Nov 11.

Abstract

PURPOSE

A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection.

METHODS

The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location.

RESULTS

For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth.

CONCLUSIONS

Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.

摘要

目的

本文提出了一种全自动分割算法——渐进表面分辨率(PSR),用于确定生物医学成像中常见的近似凸blob 结构的封闭表面。该 PSR 算法应用于 46 例低剂量胸部 CT 图像 460 个椎体的皮质表面分割,可用于自动骨密度测量和压缩性骨折检测。

方法

目标表面由封闭的三角形网格实现,从而保证了封闭性。三角形网格表示的表面顶点沿 3D 角空间中均匀分布的径向轨迹约束。通过确定每个径向轨迹与目标表面的交点位置来完成分割。首先根据输入的高置信度边界图像初始化表面,然后根据动态吸引图以目标表面位置的证据递减顺序逐步解析。

结果

对于目视评估,该算法实现了 99.35%的椎体的可接受分割。对 46 个椎体进行了定量评估,使用手动注释作为金标准,总体平均 Dice 系数为 0.939(最大值 [Formula: see text] 0.957,最小值 [Formula: see text] 0.906,标准差 [Formula: see text] 0.011)。

结论

视觉和定量评估均表明 PSR 算法具有令人鼓舞的性能。这种新颖的表面分辨率策略为分割表面提供了均匀的角分辨率,其计算复杂度和运行时间与三角形网格表示的顶点总数呈线性约束。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验