Department of Chemistry, Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
J Am Chem Soc. 2013 Mar 20;135(11):4333-63. doi: 10.1021/ja3109664. Epub 2013 Mar 11.
Functionalized proline residues have diverse applications. Herein we describe a practical approach, proline editing, for the synthesis of peptides with stereospecifically modified proline residues. Peptides are synthesized by standard solid-phase peptide synthesis to incorporate Fmoc-hydroxyproline (4R-Hyp). In an automated manner, the Hyp hydroxyl is protected and the remainder of the peptide synthesized. After peptide synthesis, the Hyp protecting group is orthogonally removed and Hyp selectively modified to generate substituted proline amino acids, with the peptide main chain functioning to "protect" the proline amino and carboxyl groups. In a model tetrapeptide (Ac-TYPN-NH2), 4R-Hyp was stereospecifically converted to 122 different 4-substituted prolyl amino acids, with 4R or 4S stereochemistry, via Mitsunobu, oxidation, reduction, acylation, and substitution reactions. 4-Substituted prolines synthesized via proline editing include incorporated structured amino acid mimetics (Cys, Asp/Glu, Phe, Lys, Arg, pSer/pThr), recognition motifs (biotin, RGD), electron-withdrawing groups to induce stereoelectronic effects (fluoro, nitrobenzoate), handles for heteronuclear NMR ((19)F:fluoro; pentafluorophenyl or perfluoro-tert-butyl ether; 4,4-difluoro; (77)SePh) and other spectroscopies (fluorescence, IR: cyanophenyl ether), leaving groups (sulfonate, halide, NHS, bromoacetate), and other reactive handles (amine, thiol, thioester, ketone, hydroxylamine, maleimide, acrylate, azide, alkene, alkyne, aryl halide, tetrazine, 1,2-aminothiol). Proline editing provides access to these proline derivatives with no solution-phase synthesis. All peptides were analyzed by NMR to identify stereoelectronic and steric effects on conformation. Proline derivatives were synthesized to permit bioorthogonal conjugation reactions, including azide-alkyne, tetrazine-trans-cyclooctene, oxime, reductive amination, native chemical ligation, Suzuki, Sonogashira, cross-metathesis, and Diels-Alder reactions. These proline derivatives allowed three parallel bioorthogonal reactions to be conducted in one solution.
功能化脯氨酸残基具有多种应用。本文描述了一种实用的方法,脯氨酸编辑,用于合成具有立体特异性修饰脯氨酸残基的肽。肽通过标准固相肽合成合成以掺入 Fmoc-羟基脯氨酸(4R-Hyp)。以自动化方式,保护 Hyp 羟基,然后合成其余的肽。肽合成后,Hyp 保护基团被正交去除,Hyp 被选择性修饰以生成取代的脯氨酸氨基酸,肽主链起到“保护”脯氨酸氨基和羧基的作用。在模型四肽(Ac-TYPN-NH2)中,通过 Mitsunobu、氧化、还原、酰化和取代反应,4R-Hyp 立体特异性转化为 122 种不同的 4-取代脯氨酰氨基酸,具有 4R 或 4S 立体化学。通过脯氨酸编辑合成的 4-取代脯氨酸包括掺入的结构类似物氨基酸(半胱氨酸、天冬氨酸/谷氨酸、苯丙氨酸、赖氨酸、精氨酸、磷酸丝氨酸/苏氨酸)、识别基序(生物素、RGD)、诱导立体电子效应的吸电子基团(氟、硝基苯甲酸酯)、用于异核 NMR((19)F:氟;五氟苯基或全氟叔丁基醚;4,4-二氟;(77)SePh)和其他光谱学(荧光、IR:氰基苯基醚)的处理剂,离去基团(磺酸酯、卤化物、NHS、溴乙酸酯)和其他反应性处理剂(胺、巯基、硫酯、酮、羟胺、马来酰亚胺、丙烯酰胺、叠氮化物、烯烃、炔烃、芳基卤化物、四嗪、1,2-氨基硫醇)。脯氨酸编辑提供了无溶液相合成即可获得这些脯氨酸衍生物的途径。所有肽都通过 NMR 分析以确定构象上的立体电子和空间效应。合成了脯氨酸衍生物以允许进行生物正交共轭反应,包括叠氮化物-炔烃、四嗪-反式环辛烯、肟、还原胺化、天然化学连接、Suzuki、Sonogashira、交叉复分解和 Diels-Alder 反应。这些脯氨酸衍生物允许在一个溶液中进行三个平行的生物正交反应。